اختلاف التقدم الحسابي حسب. التقدم الحسابي – تسلسل الأرقام

إذا كان لكل عدد طبيعي ن تطابق عدد حقيقي ن ، ثم يقولون أنه أعطى تسلسل رقمي :

أ 1 , أ 2 , أ 3 , . . . , ن , . . . .

لذا، فإن التسلسل الرقمي هو دالة للوسيطة الطبيعية.

رقم أ 1 مُسَمًّى أول عضو في التسلسل ، رقم أ 2 الحد الثاني من المتتابعة ، رقم أ 3 ثالث وهكذا. رقم ن مُسَمًّى العضو n في التسلسل ، وعدد طبيعي نرقمه .

من عضوين متجاورين ن و ن +1 عضو التسلسل ن +1 مُسَمًّى تالي (نسبة إلى ن )، أ ن سابق (نسبة إلى ن +1 ).

لتحديد تسلسل، تحتاج إلى تحديد طريقة تسمح لك بالعثور على عضو في التسلسل بأي رقم.

في كثير من الأحيان يتم تحديد التسلسل باستخدام صيغ المصطلح n ، وهي صيغة تسمح لك بتحديد عضو في التسلسل من خلال رقمه.

على سبيل المثال،

يمكن إعطاء سلسلة من الأرقام الفردية الموجبة بواسطة الصيغة

ن= 2ن- 1,

وتسلسل التناوب 1 و -1 - صيغة

بن = (-1)ن +1 .

يمكن تحديد التسلسل صيغة متكررة, أي صيغة تعبر عن أي عضو في المتوالية، ابتداءً من البعض، مروراً بالعضو السابق (واحد أو أكثر).

على سبيل المثال،

لو أ 1 = 1 ، أ ن +1 = ن + 5

أ 1 = 1,

أ 2 = أ 1 + 5 = 1 + 5 = 6,

أ 3 = أ 2 + 5 = 6 + 5 = 11,

أ 4 = أ 3 + 5 = 11 + 5 = 16,

أ 5 = أ 4 + 5 = 16 + 5 = 21.

لو أ 1= 1, 2 = 1, ن +2 = ن + ن +1 , ومن ثم يتم تحديد الحدود السبعة الأولى من التسلسل الرقمي على النحو التالي:

أ 1 = 1,

2 = 1,

أ 3 = أ 1 + 2 = 1 + 1 = 2,

أ 4 = 2 + أ 3 = 1 + 2 = 3,

5 = أ 3 + أ 4 = 2 + 3 = 5,

أ 6 = أ 4 + أ 5 = 3 + 5 = 8,

أ 7 = أ 5 + أ 6 = 5 + 8 = 13.

يمكن أن تكون تسلسلات أخير و لا نهاية لها .

يسمى التسلسل ذروة إذا كان لديه عدد محدود من الأعضاء. يسمى التسلسل لا نهاية لها إذا كان لديه عدد لا نهائي من الأعضاء.

على سبيل المثال،

تسلسل الأعداد الطبيعية المكونة من رقمين:

10, 11, 12, 13, . . . , 98, 99

أخير.

تسلسل الأعداد الأولية:

2, 3, 5, 7, 11, 13, . . .

لا نهاية لها.

يسمى التسلسل زيادة إذا كان كل عضو من أعضائه ابتداء من الثاني أكبر من الذي قبله.

يسمى التسلسل متناقص إذا كان كل عضو من أعضائه ابتداء من الثاني أقل من سابقه.

على سبيل المثال،

2, 4, 6, 8, . . . , 2ن, . . . - تسلسل متزايد؛

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /ن, . . . - تسلسل تنازلي.

يسمى التسلسل الذي لا تنخفض عناصره مع زيادة العدد، أو على العكس من ذلك، لا تزيد تسلسل رتيب .

التسلسلات الرتيبة، على وجه الخصوص، هي تسلسلات متزايدة وتسلسلات متناقصة.

التقدم الحسابي

التقدم الحسابي هو تسلسل يكون فيه كل عضو، بدءًا من الثاني، مساويًا للعضو السابق، والذي يضاف إليه نفس الرقم.

أ 1 , أ 2 , أ 3 , . . . , ن, . . .

هو تقدم حسابي إذا كان لأي عدد طبيعي ن تم استيفاء الشرط:

ن +1 = ن + د,

أين د - عدد معين .

وبالتالي، فإن الفرق بين الحدود اللاحقة والسابقة لتقدم حسابي معين يكون دائمًا ثابتًا:

2 - أ 1 = أ 3 - أ 2 = . . . = ن +1 - ن = د.

رقم د مُسَمًّى اختلاف التقدم الحسابي.

لتحديد التقدم الحسابي، يكفي الإشارة إلى الحد الأول والفرق.

على سبيل المثال،

لو أ 1 = 3, د = 4 ، فنجد الحدود الخمسة الأولى من المتتابعة كما يلي:

أ 1 =3,

2 = أ 1 + د = 3 + 4 = 7,

أ 3 = 2 + د= 7 + 4 = 11,

أ 4 = أ 3 + د= 11 + 4 = 15,

أ 5 = أ 4 + د= 15 + 4 = 19.

للتقدم الحسابي مع الفصل الأول أ 1 والفرق د ها ن

ن = أ 1 + (ن- 1)د.

على سبيل المثال،

أوجد الحد الثلاثين للمتتابعة الحسابية

1, 4, 7, 10, . . .

أ 1 =1, د = 3,

30 = أ 1 + (30 - 1)د = 1 + 29· 3 = 88.

ن-1 = أ 1 + (ن- 2)د،

ن= أ 1 + (ن- 1)د،

ن +1 = أ 1 + اختصار الثاني,

ثم من الواضح

ن=
ن-1 + ن+1
2

كل عضو في المتوالية الحسابية، ابتداء من الثاني، يساوي الوسط الحسابي للأعضاء السابقين واللاحقين.

الأرقام a وb وc هي حدود متتالية لبعض التقدم الحسابي إذا وفقط إذا كان أحدها يساوي الوسط الحسابي للاثنين الآخرين.

على سبيل المثال،

ن = 2ن- 7 ، هو التقدم الحسابي.

دعونا نستخدم البيان أعلاه. لدينا:

ن = 2ن- 7,

ن-1 = 2(ن- 1) - 7 = 2ن- 9,

ن+1 = 2(ن+ 1) - 7 = 2ن- 5.

لذلك،

ن+1 + ن-1
=
2ن- 5 + 2ن- 9
= 2ن- 7 = ن,
2
2

لاحظ أن ن يمكن العثور على الحد العاشر للتقدم الحسابي ليس فقط من خلال أ 1 ، ولكن أيضًا أي سابقة ك

ن = ك + (ن- ك)د.

على سبيل المثال،

ل أ 5 يمكن كتابتها

5 = أ 1 + 4د,

5 = 2 + 3د,

5 = أ 3 + 2د,

5 = أ 4 + د.

ن = ن ك + دينار كويتي,

ن = ن+ك - دينار كويتي,

ثم من الواضح

ن=
أ ن-ك ن + ك
2

أي عضو في المتوالية الحسابية، ابتداء من الثاني، يساوي نصف مجموع أعضاء هذه المتوالية الحسابية المتباعدة عنه بشكل متساو.

بالإضافة إلى ذلك، بالنسبة لأي تقدم حسابي، فإن المساواة التالية تحمل:

أ م + أ ن = أ ك + أ ل,

م + ن = ك + ل.

على سبيل المثال،

في التقدم الحسابي

1) أ 10 = 28 = (25 + 31)/2 = (أ 9 + أ 11 )/2;

2) 28 = 10 = أ 3 + 7د= 7 + 7 3 = 7 + 21 = 28؛

3) 10= 28 = (19 + 37)/2 = (أ 7 + أ 13)/2;

4) أ 2 + أ 12 = أ 5 + أ 9, لأن

أ 2 + أ 12= 4 + 34 = 38,

أ 5 + أ 9 = 13 + 25 = 38.

س ن= أ 1 + أ 2 + أ 3 + . . .+ ن,

أولاً ن شروط التقدم الحسابي تساوي منتج نصف مجموع الحدود المتطرفة وعدد الحدود:

من هنا، على وجه الخصوص، يترتب على ذلك أنه إذا كنت بحاجة إلى جمع الحدود

ك, ك +1 , . . . , ن,

ثم تحتفظ الصيغة السابقة ببنيتها:

على سبيل المثال،

في التقدم الحسابي 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

س 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = س 10 - س 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

إذا تم إعطاء تقدم حسابي، ثم الكميات أ 1 , ن, د, نوس ن متصلة بواسطة صيغتين:

لذلك، إذا تم إعطاء قيم ثلاث من هذه الكميات، فسيتم تحديد القيم المقابلة للكميتين الأخريين من هذه الصيغ، مجتمعة في نظام من معادلتين مع مجهولين.

التقدم الحسابي هو تسلسل رتيب. في هذه الحالة:

  • لو د > 0 ، فهو في ازدياد؛
  • لو د < 0 ، فهو يتناقص؛
  • لو د = 0 ، فإن التسلسل سيكون ثابتا.

التقدم الهندسي

التقدم الهندسي هو تسلسل يكون فيه كل عضو بدءًا من الثاني يساوي العضو السابق مضروبًا في نفس العدد.

ب 1 , ب 2 , ب 3 , . . . , ب ن, . . .

هو تقدم هندسي إذا كان لأي عدد طبيعي ن تم استيفاء الشرط:

ب ن +1 = ب ن · س,

أين س ≠ 0 - عدد معين .

وبالتالي، فإن نسبة الحد اللاحق لمتوالية هندسية معينة إلى الحد السابق هي رقم ثابت:

ب 2 / ب 1 = ب 3 / ب 2 = . . . = ب ن +1 / ب ن = س.

رقم س مُسَمًّى مقام التقدم الهندسي.

لتحديد المتوالية الهندسية، يكفي الإشارة إلى حدها الأول ومقامها.

على سبيل المثال،

لو ب 1 = 1, س = -3 ، فنجد الحدود الخمسة الأولى من المتتابعة كما يلي:

ب 1 = 1,

ب 2 = ب 1 · س = 1 · (-3) = -3,

ب 3 = ب 2 · س= -3 · (-3) = 9,

ب 4 = ب 3 · س= 9 · (-3) = -27,

ب 5 = ب 4 · س= -27 · (-3) = 81.

ب 1 والقاسم س ها ن يمكن العثور على الحد العاشر باستخدام الصيغة:

ب ن = ب 1 · Qn -1 .

على سبيل المثال،

أوجد الحد السابع للمتتالية الهندسية 1, 2, 4, . . .

ب 1 = 1, س = 2,

ب 7 = ب 1 · س 6 = 1 2 6 = 64.

ب ن-1 = ب 1 · Qn -2 ,

ب ن = ب 1 · Qn -1 ,

ب ن +1 = ب 1 · Qn,

ثم من الواضح

ب ن 2 = ب ن -1 · ب ن +1 ,

فكل عضو في المتوالية الهندسية ابتداء من الثاني يساوي الوسط الهندسي (النسبي) للأعضاء السابقة واللاحقة.

وبما أن العكس صحيح أيضاً، فإن العبارة التالية تقول:

الأرقام a وb وc هي حدود متتالية لبعض التقدم الهندسي إذا وفقط إذا كان مربع أحدها يساوي حاصل ضرب الرقمين الآخرين، أي أن أحد الأرقام هو الوسط الهندسي للرقمين الآخرين.

على سبيل المثال،

دعونا نثبت أن التسلسل المعطاة بالصيغة ب ن= -3 2 ن ، هو تقدم هندسي. دعونا نستخدم البيان أعلاه. لدينا:

ب ن= -3 2 ن,

ب ن -1 = -3 2 ن -1 ,

ب ن +1 = -3 2 ن +1 .

لذلك،

ب ن 2 = (-3 2 ن) 2 = (-3 2 ن -1 ) · (-3 · 2 ن +1 ) = ب ن -1 · ب ن +1 ,

مما يثبت القول المطلوب.

لاحظ أن ن يمكن العثور على الحد الرابع للتقدم الهندسي ليس فقط من خلال ب 1 ، ولكن أيضًا أي عضو سابق ب ك ، وهو ما يكفي لاستخدام الصيغة

ب ن = ب ك · Qn - ك.

على سبيل المثال،

ل ب 5 يمكن كتابتها

ب 5 = ب 1 · س 4 ,

ب 5 = ب 2 · س 3,

ب 5 = ب 3 · س 2,

ب 5 = ب 4 · س.

ب ن = ب ك · Qn - ك,

ب ن = ب ن - ك · س ك,

ثم من الواضح

ب ن 2 = ب ن - ك· ب ن + ك

فمربع أي حد من المتوالية الهندسية، بدءًا من الثاني، يساوي حاصل ضرب الحدود المتساوية لهذا المتوالية.

بالإضافة إلى ذلك، بالنسبة لأي تقدم هندسي، تكون المساواة صحيحة:

ب م· ب ن= ب ك· ب ل,

م+ ن= ك+ ل.

على سبيل المثال،

في التقدم الهندسي

1) ب 6 2 = 32 2 = 1024 = 16 · 64 = ب 5 · ب 7 ;

2) 1024 = ب 11 = ب 6 · س 5 = 32 · 2 5 = 1024;

3) ب 6 2 = 32 2 = 1024 = 8 · 128 = ب 4 · ب 8 ;

4) ب 2 · ب 7 = ب 4 · ب 5 , لأن

ب 2 · ب 7 = 2 · 64 = 128,

ب 4 · ب 5 = 8 · 16 = 128.

س ن= ب 1 + ب 2 + ب 3 + . . . + ب ن

أولاً ن أعضاء التقدم الهندسي مع القاسم س 0 تحسب بواسطة الصيغة:

ومتى س = 1 - حسب الصيغة

س ن= ملحوظة: 1

لاحظ أنه إذا كنت بحاجة إلى جمع الشروط

ب ك, ب ك +1 , . . . , ب ن,

ثم يتم استخدام الصيغة:

س ن- س ك -1 = ب ك + ب ك +1 + . . . + ب ن = ب ك · 1 - Qn - ك +1
.
1 - س

على سبيل المثال،

في التقدم الهندسي 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

س 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = س 10 - س 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

إذا تم إعطاء تقدم هندسي، ثم الكميات ب 1 , ب ن, س, نو س ن متصلة بواسطة صيغتين:

لذلك، إذا تم إعطاء قيم أي ثلاث من هذه الكميات، فسيتم تحديد القيم المقابلة للكميتين الأخريين من هذه الصيغ، مجتمعة في نظام من معادلتين مع مجهولين.

للحصول على متوالية هندسية مع الفصل الأول ب 1 والقاسم س يحدث ما يلي خصائص الرتابة :

  • ويتزايد التقدم إذا تم استيفاء أحد الشروط التالية:

ب 1 > 0 و س> 1;

ب 1 < 0 و 0 < س< 1;

  • يتناقص التقدم إذا تم استيفاء أحد الشروط التالية:

ب 1 > 0 و 0 < س< 1;

ب 1 < 0 و س> 1.

لو س< 0 ، فإن المتتالية الهندسية تتناوب: حدودها ذات الأعداد الفردية لها نفس إشارة حدها الأول، والحدود ذات الأعداد الزوجية لها علامة معاكسة. من الواضح أن التقدم الهندسي المتناوب ليس رتيبًا.

المنتج الأول ن يمكن حساب شروط التقدم الهندسي باستخدام الصيغة:

ب= ب 1 · ب 2 · ب 3 · . . . · ب ن = (ب 1 · ب ن) ن / 2 .

على سبيل المثال،

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

تناقص التقدم الهندسي بشكل لا نهائي

تناقص التقدم الهندسي بشكل لا نهائي يسمى متوالية هندسية لا نهائية معامل مقامها أقل 1 ، إنه

|س| < 1 .

لاحظ أن المتوالية الهندسية المتناقصة بشكل لا نهائي قد لا تكون متوالية متناقصة. يناسب هذه المناسبة

1 < س< 0 .

مع هذا المقام، فإن التسلسل يتناوب. على سبيل المثال،

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

مجموع متوالية هندسية متناقصة بشكل لا نهائي قم بتسمية الرقم الذي يقترب منه مجموع الأعداد الأولى بلا حدود ن أعضاء التقدم مع زيادة غير محدودة في العدد ن . هذا الرقم دائمًا محدود ويتم التعبير عنه بالصيغة

س= ب 1 + ب 2 + ب 3 + . . . = ب 1
.
1 - س

على سبيل المثال،

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

العلاقة بين المتوالية الحسابية والهندسية

ترتبط التقدمات الحسابية والهندسية ارتباطًا وثيقًا. دعونا ننظر إلى مثالين فقط.

أ 1 , أ 2 , أ 3 , . . . د ، الذي - التي

ب أ 1 , ب أ 2 , ب أ 3 , . . . ب د .

على سبيل المثال،

1, 3, 5, . . . - التقدم الحسابي مع الفرق 2 و

7 1 , 7 3 , 7 5 , . . . - التقدم الهندسي مع القاسم 7 2 .

ب 1 , ب 2 , ب 3 , . . . - التقدم الهندسي مع القاسم س ، الذي - التي

سجل أ ب 1, سجل أ ب 2, سجل أ ب 3, . . . - التقدم الحسابي مع الفرق سجل أس .

على سبيل المثال،

2, 12, 72, . . . - التقدم الهندسي مع القاسم 6 و

إل جي 2, إل جي 12, إل جي 72, . . . - التقدم الحسابي مع الفرق إل جي 6 .

مجموع التقدم الحسابي.

مجموع التقدم الحسابي هو شيء بسيط. سواء في المعنى أو في الصيغة. ولكن هناك كل أنواع المهام حول هذا الموضوع. من الأساسية إلى الصلبة تماما.

أولا، دعونا نفهم معنى وصيغة المبلغ. ومن ثم سنقرر. من أجل متعتك الخاصة.) معنى المبلغ بسيط مثل مو. للعثور على مجموع التقدم الحسابي، تحتاج فقط إلى إضافة جميع حدوده بعناية. إذا كانت هذه المصطلحات قليلة، فيمكنك الإضافة بدون أي صيغ. ولكن إذا كان هناك الكثير، أو الكثير... فالإضافة مزعجة.) في هذه الحالة، تأتي الصيغة للإنقاذ.

صيغة المبلغ بسيطة:

دعونا نتعرف على نوع الحروف المضمنة في الصيغة. وهذا سوف يوضح الأمور كثيرا.

س ن - مجموع التقدم الحسابي. نتيجة الإضافة الجميعالأعضاء، مع أولاًبواسطة آخر.هذا مهم. يضيفون بالضبط الجميعالأعضاء على التوالي، دون تخطي أو تخطي. وعلى وجه التحديد، بدءا من أولاً.في مسائل مثل إيجاد مجموع الحدين الثالث والثامن، أو مجموع الحدين الخامس إلى العشرين، فإن التطبيق المباشر للصيغة سيكون مخيبًا للآمال.)

أ 1 - أولاًعضو في التقدم . كل شيء واضح هنا، الأمر بسيط أولاًرقم الصف.

ن- آخرعضو في التقدم . العدد الأخير من السلسلة. اسم ليس مألوفًا جدًا، لكن عند تطبيقه على المبلغ فهو مناسب جدًا. ثم سوف ترى بنفسك.

ن - رقم العضو الأخير. من المهم أن نفهم أن هذا الرقم موجود في الصيغة يتزامن مع عدد المصطلحات المضافة.

دعونا نحدد المفهوم آخرعضو ن. سؤال صعب: أي عضو سيكون الأخيرإذا أعطيت لا نهاية لهاالتقدم الحسابي؟)

للإجابة بثقة، تحتاج إلى فهم المعنى الأولي للتقدم الحسابي و... قراءة المهمة بعناية!)

في مهمة إيجاد مجموع التقدم الحسابي، يظهر الحد الأخير دائمًا (بشكل مباشر أو غير مباشر)، والتي ينبغي أن تكون محدودة.خلاف ذلك، مبلغ نهائي محدد ببساطة غير موجود.بالنسبة للحل، لا يهم ما إذا كان التقدم معطى: محدود أو لانهائي. لا يهم كيف يتم تقديمها: سلسلة من الأرقام، أو صيغة للحد n.

الشيء الأكثر أهمية هو أن نفهم أن الصيغة تعمل من الحد الأول للتقدم إلى الحد ذو الرقم ن.في الواقع، يبدو الاسم الكامل للصيغة كما يلي: مجموع الحدود n الأولى للتقدم الحسابي.عدد هؤلاء الأعضاء الأوائل ، أي. ن، يتم تحديده فقط من خلال المهمة. في إحدى المهام، غالبًا ما يتم تشفير كل هذه المعلومات القيمة، نعم... ولكن لا يهم، في الأمثلة أدناه نكشف عن هذه الأسرار.)

أمثلة على المهام على مجموع التقدم الحسابي.

في البداية معلومات مفيدة:

تكمن الصعوبة الرئيسية في المهام التي تتضمن مجموع التقدم الحسابي في التحديد الصحيح لعناصر الصيغة.

يقوم مؤلفو المهام بتشفير هذه العناصر ذاتها بخيال لا حدود له.) الشيء الرئيسي هنا هو عدم الخوف. فهم جوهر العناصر، يكفي فك رموزها ببساطة. دعونا نلقي نظرة على بعض الأمثلة بالتفصيل. لنبدأ بمهمة تعتمد على GIA حقيقي.

1. يتم إعطاء التقدم الحسابي بالشرط: a n = 2n-3.5. أوجد مجموع حدوده العشرة الأولى.

أحسنت. سهل.) لتحديد المبلغ باستخدام الصيغة، ما الذي نحتاج إلى معرفته؟ العضو الأول أ 1،الفصل الأخير ننعم رقم العضو الأخير ن.

أين يمكنني الحصول على رقم العضو الأخير؟ ن؟ نعم، هناك، بشرط! تقول: أوجد المبلغ أول 10 أعضاء.حسنًا، ما هو الرقم الذي سيكون معه؟ آخر،العضو العاشر؟) لن تصدق، رقمه هو العاشر!) لذلك بدلاً من نسوف نعوض في الصيغة 10، وبدلا من ذلك ن- عشرة. وأكرر أن عدد العضو الأخير يتطابق مع عدد الأعضاء.

يبقى أن نحدد أ 1و 10. يمكن حساب ذلك بسهولة باستخدام صيغة الحد n، الواردة في بيان المشكلة. لا أعرف كيف تفعل هذا؟ احضروا الدرس السابق فبدونه لا سبيل.

أ 1= 2 1 - 3.5 = -1.5

10=2·10 - 3.5 =16.5

س ن = س 10.

لقد اكتشفنا معنى جميع عناصر الصيغة لمجموع التقدم الحسابي. كل ما تبقى هو استبدالهم والعد:

هذا كل شيء. الجواب: 75.

مهمة أخرى تعتمد على GIA. أكثر تعقيدًا بعض الشيء:

2. بالنظر إلى المتوالية الحسابية (a n) التي يكون الفرق فيها 3.7؛ 1 =2.3. أوجد مجموع حدوده الخمسة عشر الأولى.

نكتب على الفور صيغة المجموع:

تتيح لنا هذه الصيغة إيجاد قيمة أي حد من خلال رقمه. نحن نبحث عن بديل بسيط:

أ 15 = 2.3 + (15-1) 3.7 = 54.1

يبقى استبدال جميع العناصر في صيغة مجموع التقدم الحسابي وحساب الإجابة:

الجواب: 423.

بالمناسبة، إذا كان في صيغة المبلغ بدلا من ننحن ببساطة نعوض بصيغة الحد n ونحصل على:

دعونا نقدم مماثلة ونحصل على صيغة جديدة لمجموع حدود التقدم الحسابي:

كما ترون، فإن المصطلح n غير مطلوب هنا ن. في بعض المشاكل، تعتبر هذه الصيغة مساعدة كبيرة، نعم... يمكنك تذكر هذه الصيغة. أو يمكنك ببساطة عرضه في الوقت المناسب، كما هو الحال هنا. بعد كل شيء، عليك دائمًا أن تتذكر صيغة المجموع وصيغة الحد النوني.)

الآن المهمة في شكل تشفير قصير):

3. أوجد مجموع الأعداد الموجبة المكونة من رقمين والتي هي من مضاعفات العدد ثلاثة.

رائع! لا عضوك الأول ولا الأخير ولا التقدم على الإطلاق... كيف تعيش!؟

سيتعين عليك التفكير برأسك وسحب جميع عناصر مجموع التقدم الحسابي من الحالة. نحن نعرف ما هي الأعداد المكونة من رقمين. وهي تتكون من رقمين.) ما هو الرقم المكون من رقمين أولاً؟ 10، على الأرجح.) أ آخررقم مزدوج؟ 99 بالطبع! والأرقام الثلاثة ستتبعه..

مضاعفات الثلاثة... حسنًا... هذه أرقام تقبل القسمة على ثلاثة، هنا! العشرة لا تقبل القسمة على ثلاثة، 11 لا تقبل القسمة... 12... لا تقبل القسمة! لذلك، هناك شيء آخذ في الظهور. يمكنك بالفعل كتابة سلسلة وفقًا لشروط المشكلة:

12, 15, 18, 21, ... 96, 99.

هل ستكون هذه المتسلسلة متوالية حسابية؟ بالتأكيد! ويختلف كل مصطلح عن السابق بثلاثة فقط. إذا أضفت 2 أو 4 إلى حد ما، على سبيل المثال، النتيجة، أي. الرقم الجديد لم يعد يقبل القسمة على 3. يمكنك على الفور تحديد الفرق في التقدم الحسابي: د = 3.سيكون في متناول اليدين!)

لذا، يمكننا تدوين بعض معلمات التقدم بأمان:

ماذا سيكون الرقم؟ نآخر عضو؟ أي شخص يعتقد أن 99 مخطئ للغاية... الأرقام دائمًا تكون متتالية، لكن أعضاؤنا يقفزون فوق الثلاثة. أنها لا تتطابق.

هناك حلان هنا. إحدى الطرق هي للمجتهدين للغاية. يمكنك تدوين التقدم وسلسلة الأرقام بأكملها وحساب عدد الأعضاء بإصبعك.) الطريقة الثانية للمفكرين. عليك أن تتذكر صيغة الحد n. إذا طبقنا الصيغة على مشكلتنا، نجد أن 99 هو الحد الثلاثون للتقدم. أولئك. ن = 30.

دعونا نلقي نظرة على صيغة مجموع التقدم الحسابي:

نحن ننظر ونبتهج.) لقد أخرجنا من بيان المشكلة كل ما هو ضروري لحساب المبلغ:

أ 1= 12.

30= 99.

س ن = س 30.

كل ما تبقى هو الحساب الأولي. نستبدل الأرقام في الصيغة ونحسب:

الجواب: 1665

نوع آخر من الألغاز الشائعة:

4. بالنظر إلى التقدم الحسابي:

-21,5; -20; -18,5; -17; ...

أوجد مجموع الحدود من عشرين إلى أربعة وثلاثين.

ننظر إلى صيغة المبلغ و... نشعر بالانزعاج.) دعني أذكرك، الصيغة تحسب المبلغ من الأولعضو. وفي المشكلة تحتاج إلى حساب المبلغ منذ العشرين..الصيغة لن تعمل.

يمكنك، بالطبع، كتابة التقدم بأكمله في سلسلة، وإضافة مصطلحات من 20 إلى 34. لكن... إنه أمر غبي إلى حد ما ويستغرق وقتًا طويلاً، أليس كذلك؟)

هناك حل أكثر أناقة. دعونا نقسم سلسلتنا إلى قسمين. الجزء الأول سيكون من الفصل الأول إلى التاسع عشر.الجزء الثاني - من العشرين إلى الرابعة والثلاثين.ومن الواضح أنه إذا حسبنا مجموع مصطلحات الجزء الأول ق1-19لنضفها مع مجموع حدود الجزء الثاني ق 20-34فنحصل على مجموع التقدم من الفصل الأول إلى الرابع والثلاثين ق1-34. مثله:

ق1-19 + ق 20-34 = ق1-34

من هذا يمكننا أن نرى أن العثور على المبلغ ق 20-34يمكن أن يتم عن طريق الطرح البسيط

ق 20-34 = ق1-34 - ق1-19

ويعتبر كلا المبلغين على الجانب الأيمن من الأولعضو، أي. صيغة المبلغ القياسية تنطبق عليهم تمامًا. دعونا نبدأ؟

نستخرج معلمات التقدم من بيان المشكلة:

د = 1.5.

أ 1= -21,5.

لحساب مجموع أول 19 وأول 34 حدًا، سنحتاج إلى الحدين 19 و34. نحسبها باستخدام صيغة الحد النوني، كما في المسألة الثانية:

19= -21.5 +(19-1) 1.5 = 5.5

34= -21.5 +(34-1) 1.5 = 28

لم يبق شيء. من مجموع 34 حدًا اطرح مجموع 19 حدًا:

ق 20-34 = ق 1-34 - ق 1-19 = 110.5 - (-152) = 262.5

الجواب: 262.5

ملاحظة هامة! هناك خدعة مفيدة للغاية في حل هذه المشكلة. بدلا من الحساب المباشر ما تحتاجه (س20-34)،لقد أحصينا شيء يبدو أنه ليس هناك حاجة إليه - س 1-19.وبعد ذلك قرروا ق 20-34، والتخلص من ما هو غير ضروري من النتيجة الكاملة. هذا النوع من "الخدعة بأذنيك" غالبًا ما ينقذك من المشاكل الشريرة.)

نظرنا في هذا الدرس إلى المسائل التي يكفي أن نفهم فيها معنى مجموع التقدم الحسابي. حسنًا، أنت بحاجة إلى معرفة بعض الصيغ.)

نصيحة عملية:

عند حل أي مشكلة تتضمن مجموع التقدم الحسابي، أوصي بكتابة الصيغتين الرئيسيتين من هذا الموضوع على الفور.

صيغة الحد التاسع :

ستخبرك هذه الصيغ على الفور بما يجب البحث عنه وفي أي اتجاه يجب التفكير فيه لحل المشكلة. يساعد.

والآن مهام الحل المستقل.

5. أوجد مجموع الأعداد المكونة من رقمين والتي لا تقبل القسمة على ثلاثة.

رائع؟) التلميح مخفي في ملاحظة المشكلة رقم 4. حسنًا، المشكلة رقم 3 ستساعدك.

6. يُعطى التقدم الحسابي بالشرط: a 1 = -5.5؛ ن+1 = ن +0.5. أوجد مجموع حدوده الـ 24 الأولى.

غير عادية؟) هذه صيغة متكررة. يمكنك أن تقرأ عنها في الدرس السابق. لا تتجاهل الرابط، فمثل هذه المشكلات غالبًا ما توجد في أكاديمية الدولة للعلوم.

7. قام فاسيا بتوفير المال لقضاء العطلة. بقدر 4550 روبل! وقررت أن أمنح الشخص المفضل لدي (نفسي) بضعة أيام من السعادة). عش بشكل جميل دون حرمان نفسك من أي شيء. أنفق 500 روبل في اليوم الأول، وفي كل يوم لاحق أنفق 50 روبل أكثر من اليوم السابق! حتى نفاد المال. كم عدد أيام السعادة التي عاشها فاسيا؟

هل هذا صعب؟) صيغة إضافية من المهمة 2 ستساعدك.

الأجوبة (في حالة الفوضى): 7، 3240، 6.

إذا أعجبك هذا الموقع...

بالمناسبة، لدي موقعين أكثر إثارة للاهتمام بالنسبة لك.)

يمكنك التدرب على حل الأمثلة ومعرفة مستواك. الاختبار مع التحقق الفوري. دعونا نتعلم - باهتمام!)

يمكنك التعرف على الوظائف والمشتقات.

عند دراسة الجبر في المدرسة الثانوية (الصف التاسع)، أحد الموضوعات المهمة هو دراسة التسلسل العددي، والذي يتضمن التقدم - الهندسي والحسابي. في هذه المقالة سوف نلقي نظرة على التقدم الحسابي والأمثلة مع الحلول.

ما هو التقدم الحسابي؟

لفهم ذلك، من الضروري تحديد التقدم المعني، بالإضافة إلى توفير الصيغ الأساسية التي سيتم استخدامها لاحقًا في حل المشكلات.

من المعروف أنه في بعض المتتابعات الجبرية، يكون الحد الأول يساوي 6، والحد السابع يساوي 18. ومن الضروري إيجاد الفرق واستعادة هذا التسلسل إلى الحد السابع.

دعونا نستخدم الصيغة لتحديد الحد المجهول: a n = (n - 1) * d + a 1 . لنستبدل بها البيانات المعروفة من الشرط، أي الرقمين a 1 و a 7، لدينا: 18 = 6 + 6 * d. من هذا التعبير يمكنك بسهولة حساب الفرق: d = (18 - 6) /6 = 2. وبذلك نكون قد أجبنا على الجزء الأول من المشكلة.

لاستعادة التسلسل إلى الحد السابع، يجب عليك استخدام تعريف التقدم الجبري، أي أ 2 = أ 1 + د، أ 3 = أ 2 + د، وهكذا. ونتيجة لذلك، فإننا نستعيد التسلسل بأكمله: أ 1 = 6، أ 2 = 6 + 2 = 8، أ 3 = 8 + 2 = 10، أ 4 = 10 + 2 = 12، أ 5 = 12 + 2 = 14 ، أ 6 = 14 + 2 = 16، أ 7 = 18.

المثال رقم 3: رسم التقدم

دعونا تعقيد المشكلة أكثر. الآن نحن بحاجة للإجابة على سؤال كيفية العثور على التقدم الحسابي. يمكن إعطاء المثال التالي: تم إعطاء رقمين، على سبيل المثال - 4 و 5. من الضروري إنشاء تقدم جبري بحيث يتم وضع ثلاثة حدود أخرى بينهما.

قبل البدء في حل هذه المشكلة، عليك أن تفهم المكان الذي ستحتله الأرقام المحددة في التقدم المستقبلي. وبما أنه سيكون هناك ثلاثة حدود أخرى بينهما، فإن 1 = -4 و5 = 5. وبعد تحديد ذلك، ننتقل إلى المشكلة، التي تشبه المشكلة السابقة. مرة أخرى، بالنسبة للحد n الذي نستخدم فيه الصيغة، نحصل على: a 5 = a 1 + 4 * d. من: د = (أ 5 - أ 1)/4 = (5 - (-4)) / 4 = 2.25. ما حصلنا عليه هنا ليس قيمة صحيحة للفرق، ولكنه عدد نسبي، لذا تظل صيغ التقدم الجبري كما هي.

الآن دعونا نضيف الفرق الموجود إلى 1 ونستعيد الحدود المفقودة للتقدم. نحصل على: أ 1 = - 4، أ 2 = - 4 + 2.25 = - 1.75، أ 3 = -1.75 + 2.25 = 0.5، أ 4 = 0.5 + 2.25 = 2.75، أ 5 = 2.75 + 2.25 = 5، وهو ما تزامن مع ظروف المشكلة

مثال رقم 4: الفصل الأول من التقدم

دعنا نستمر في إعطاء أمثلة على التقدم الحسابي مع الحلول. في جميع المسائل السابقة كان الرقم الأول من المتوالية الجبرية معروفا. الآن دعونا نفكر في مسألة من نوع مختلف: دعنا نعطي رقمين، حيث 15 = 50 و43 = 37. من الضروري العثور على الرقم الذي يبدأ به هذا التسلسل.

تفترض الصيغ المستخدمة حتى الآن معرفة 1 وd. في بيان المشكلة، لا يوجد شيء معروف عن هذه الأرقام. ومع ذلك، سنكتب تعبيرات لكل حد تتوفر عنه معلومات: a 15 = a 1 + 14 * d وa 43 = a 1 + 42 * d. لقد حصلنا على معادلتين يوجد فيهما كميتين مجهولتين (أ 1 ود). وهذا يعني أن المشكلة تقتصر على حل نظام من المعادلات الخطية.

أسهل طريقة لحل هذا النظام هي التعبير عن الرقم 1 في كل معادلة ثم مقارنة التعبيرات الناتجة. المعادلة الأولى: أ 1 = أ 15 - 14 * د = 50 - 14 * د؛ المعادلة الثانية: أ 1 = أ 43 - 42 * د = 37 - 42 * د. بمساواة هذه التعبيرات، نحصل على: 50 - 14 * d = 37 - 42 * d، ومن هنا الفرق d = (37 - 50) / (42 - 14) = - 0.464 (يتم إعطاء 3 منازل عشرية فقط).

بمعرفة d، يمكنك استخدام أي من التعبيرين أعلاه للحصول على 1. على سبيل المثال، أولاً: أ 1 = 50 - 14 * د = 50 - 14 * (- 0.464) = 56.496.

إذا كانت لديك شكوك حول النتيجة التي تم الحصول عليها، يمكنك التحقق منها، على سبيل المثال، تحديد المدة 43 للتقدم، والتي تم تحديدها في الشرط. نحصل على: أ 43 = أ 1 + 42 * د = 56.496 + 42 * (- 0.464) = 37.008. يرجع الخطأ البسيط إلى حقيقة أنه تم استخدام التقريب إلى الألف في الحسابات.

مثال رقم 5: المبلغ

الآن دعونا نلقي نظرة على عدة أمثلة مع حلول لمجموع التقدم الحسابي.

دعونا نعطي تقدمًا رقميًا بالشكل التالي: 1، 2، 3، 4، ...،. كيف تحسب مجموع 100 من هذه الأرقام؟

بفضل تطور تكنولوجيا الكمبيوتر، أصبح من الممكن حل هذه المشكلة، أي إضافة جميع الأرقام بشكل تسلسلي، وهو ما سيقوم به الكمبيوتر بمجرد قيام الشخص بالضغط على مفتاح Enter. ومع ذلك، يمكن حل المشكلة عقليًا إذا انتبهت إلى حقيقة أن سلسلة الأرقام المعروضة هي تقدم جبري، وفرقها يساوي 1. وبتطبيق صيغة المجموع، نحصل على: S n = n * ( أ 1 + أ ن) / 2 = 100 * (1 + 100) / 2 = 5050.

ومن المثير للاهتمام أن نلاحظ أن هذه المشكلة تسمى "غاوسية" لأنه في بداية القرن الثامن عشر تمكن الألماني الشهير، الذي كان لا يزال عمره 10 سنوات فقط، من حلها في رأسه في بضع ثوان. لم يكن الصبي يعرف صيغة مجموع المتوالية الجبرية، لكنه لاحظ أنه إذا قمت بجمع الأرقام في نهايات المتتابعة في أزواج، فإنك تحصل دائمًا على نفس النتيجة، وهي 1 + 100 = 2 + 99 = 3 + 98 = ...، وبما أن هذه المجاميع ستكون بالضبط 50 (100 / 2)، للحصول على الإجابة الصحيحة يكفي ضرب 50 في 101.

مثال رقم 6: مجموع الحدود من n إلى m

مثال نموذجي آخر لمجموع التقدم الحسابي هو ما يلي: بالنظر إلى سلسلة من الأرقام: 3، 7، 11، 15، ...، عليك أن تجد ما يساوي مجموع حدودها من 8 إلى 14 .

يتم حل المشكلة بطريقتين. الأول يتضمن إيجاد الحدود المجهولة من 8 إلى 14، ثم جمعها بالتسلسل. نظرًا لوجود عدد قليل من المصطلحات، فإن هذه الطريقة لا تتطلب عمالة كثيفة. ومع ذلك، يقترح حل هذه المشكلة باستخدام طريقة ثانية، وهي أكثر عالمية.

تتمثل الفكرة في الحصول على صيغة لمجموع التقدم الجبري بين الحدين m وn، حيث n > m أعداد صحيحة. وفي كلتا الحالتين نكتب تعبيرين للمجموع:

  1. س م = م * (أ م + أ 1) / 2.
  2. س ن = ن * (أ ن + أ 1) / 2.

بما أن n > m، فمن الواضح أن المجموع الثاني يشمل الأول. الاستنتاج الأخير يعني أننا إذا أخذنا الفرق بين هذه المجاميع وأضفنا إليها الحد a m (في حالة أخذ الفرق يطرح من المجموع S n)، فسنحصل على الإجابة اللازمة للمسألة. لدينا: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * ن/2 + ا م * (1- م/2). من الضروري استبدال الصيغ لـ n وm في هذا التعبير. ثم نحصل على: S mn = أ 1 * (ن - م) / 2 + ن * (أ 1 + (ن - 1) * د) / 2 + (أ 1 + (م - 1) * د) * (1) - م / 2) = أ 1 * (ن - م + 1) + د * ن * (ن - 1) / 2 + د *(3 * م - م 2 - 2) / 2.

الصيغة الناتجة مرهقة إلى حد ما، ومع ذلك، فإن المبلغ S mn يعتمد فقط على n، m، a 1 و d. في حالتنا، أ 1 = 3، د = 4، ن = 14، م = 8. وباستبدال هذه الأرقام نحصل على: S mn = 301.

كما يتبين من الحلول المذكورة أعلاه، تعتمد جميع المشاكل على معرفة تعبير الحد النوني وصيغة مجموع مجموعة الحدود الأولى. قبل البدء في حل أي من هذه المشكلات، يوصى بقراءة الشرط بعناية، وفهم ما تحتاج إلى العثور عليه بوضوح، وبعد ذلك فقط متابعة الحل.

نصيحة أخرى هي السعي لتحقيق البساطة، أي إذا كان بإمكانك الإجابة على سؤال دون استخدام حسابات رياضية معقدة، فأنت بحاجة إلى القيام بذلك، لأنه في هذه الحالة يكون احتمال ارتكاب الخطأ أقل. على سبيل المثال، في مثال المتتابعة الحسابية مع الحل رقم 6، يمكن التوقف عند الصيغة S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m، و قم بتقسيم المشكلة الإجمالية إلى مهام فرعية منفصلة (في هذه الحالة، ابحث أولاً عن المصطلحين a n وa m).

إذا كانت لديك شكوك حول النتيجة التي تم الحصول عليها، فمن المستحسن التحقق منها، كما حدث في بعض الأمثلة المذكورة. اكتشفنا كيفية العثور على التقدم الحسابي. إذا عرفت ذلك، فالأمر ليس بهذه الصعوبة.

ما هو الجوهر الرئيسي للصيغة؟

هذه الصيغة تسمح لك بالعثور على أي برقمه" ن" .

وبطبيعة الحال، تحتاج أيضا إلى معرفة الفصل الأول أ 1وفارق التقدم دحسنًا، بدون هذه المعلمات، لا يمكنك كتابة تقدم معين.

إن حفظ (أو حفظ) هذه الصيغة ليس كافيًا. أنت بحاجة إلى فهم جوهرها وتطبيق الصيغة في مختلف المشاكل. وأيضا لا ننسى في اللحظة المناسبة، نعم...) كيف لا تنسى- لا أعرف. لكن كيف تتذكرإذا لزم الأمر، سأنصحك بالتأكيد. لمن أكمل الدرس حتى النهاية.)

لذا، دعونا نلقي نظرة على صيغة الحد النوني للتقدم الحسابي.

ما هي الصيغة بشكل عام؟ بالمناسبة، ألق نظرة إذا لم تكن قد قرأته. كل شيء بسيط هناك. يبقى لمعرفة ما هو عليه الفصل الدراسي التاسع.

التقدم بشكل عام يمكن كتابته كسلسلة من الأرقام:

أ 1، أ 2، أ 3، أ 4، أ 5، .....

أ 1- يشير إلى الحد الأول من التقدم الحسابي، أ 3- العضو الثالث، أ 4- الرابع وهكذا. إذا كنا مهتمين بالفصل الخامس، فلنفترض أننا نعمل مع 5إذا مائة وعشرون ق 120.

وكيف يمكننا تعريفه بعبارات عامة؟ أيمصطلح التقدم الحسابي، مع أيرقم؟ بسيط جدا! مثله:

ن

هذا كل شيء الحد n من التقدم الحسابي.يخفي الحرف n جميع أرقام الأعضاء مرة واحدة: 1، 2، 3، 4، وهكذا.

وماذا يعطينا هذا السجل؟ فكر فقط، بدلاً من الرقم، كتبوا رسالة...

يمنحنا هذا الترميز أداة قوية للتعامل مع التقدم الحسابي. باستخدام التدوين ن، يمكننا أن نجد بسرعة أيعضو أيالتقدم الحسابي. وحل مجموعة من مشاكل التقدم الأخرى. سترى بنفسك أبعد من ذلك.

في صيغة الحد n من التقدم الحسابي:

أ ن = أ 1 + (ن-1)د

أ 1- الحد الأول من التقدم الحسابي؛

ن- رقم العضو .

تربط الصيغة المعلمات الرئيسية لأي تقدم: ن ; أ 1 ؛ دو ن. جميع مشاكل التقدم تدور حول هذه المعلمات.

يمكن أيضًا استخدام صيغة المصطلح n لكتابة تقدم محدد. على سبيل المثال، قد تقول المشكلة أن التقدم محدد بالشرط:

أ ن = 5 + (ن-1) 2.

يمكن أن تكون مثل هذه المشكلة طريقًا مسدودًا... لا يوجد سلسلة ولا فرق... ولكن بمقارنة الحالة بالصيغة، من السهل أن نفهم أنه في هذا التقدم أ 1 = 5، و د = 2.

ويمكن أن يكون الأمر أسوأ!) إذا أخذنا نفس الشرط: أ ن = 5 + (ن-1) 2،نعم افتح القوسين وأحضر مثلهما؟ نحصل على صيغة جديدة:

ن = 3 + 2ن.

هذا ليس عامًا فحسب، بل لتقدم محدد. وهنا يكمن المأزق. يعتقد بعض الناس أن الحد الأول هو ثلاثة. على الرغم من أن الحد الأول في الواقع هو خمسة... أقل قليلاً سنعمل بمثل هذه الصيغة المعدلة.

في مشاكل التقدم هناك تدوين آخر - ن+1. هذا، كما خمنت، هو مصطلح "n plus first" للتقدم. معناه بسيط وغير ضار.) هذا عضو في التقدم الذي عدده أكبر من الرقم n بواحد. على سبيل المثال، إذا كنا في بعض المشاكل نأخذ نالولاية الخامسة إذن ن+1سيكون العضو السادس. وما شابه ذلك.

في أغلب الأحيان التعيين ن+1وجدت في صيغ التكرار. لا تخف من هذه الكلمة المخيفة!) هذه مجرد وسيلة للتعبير عن عضو في التقدم الحسابي من خلال السابق.لنفترض أننا حصلنا على تقدم حسابي في هذا النموذج، باستخدام صيغة متكررة:

ن+1 = ن+3

أ 2 = أ 1 + 3 = 5+3 = 8

أ 3 = أ 2 + 3 = 8+3 = 11

الرابع - حتى الثالث، والخامس - حتى الرابع، وهكذا. كيف يمكننا أن نحسب على الفور، على سبيل المثال، الحد العشرين؟ 20؟ ولكن لا توجد طريقة!) وإلى أن نكتشف الحد التاسع عشر، لا يمكننا عد الحد العشرين. هذا هو الفرق الأساسي بين الصيغة المتكررة وصيغة الحد النوني. المتكررة تعمل فقط من خلال سابقالحد، وصيغة الحد n من خلال أولاًويسمح حالاالعثور على أي عضو عن طريق رقمه. دون حساب سلسلة الأرقام بأكملها بالترتيب.

في التقدم الحسابي، من السهل تحويل الصيغة المتكررة إلى صيغة عادية. عد زوجا من الحدود المتتالية، وحساب الفرق د،ابحث، إذا لزم الأمر، عن الفصل الأول أ 1، اكتب الصيغة بشكلها المعتاد، واعمل بها. غالبًا ما تتم مواجهة مثل هذه المهام في أكاديمية الدولة للعلوم.

تطبيق صيغة الحد النوني للمتتابعة الحسابية.

أولاً، دعونا نلقي نظرة على التطبيق المباشر للصيغة. في نهاية الدرس السابق حدثت مشكلة:

يتم إعطاء التقدم الحسابي (ن). أوجد 121 إذا كان 1 = 3 و d = 1/6.

يمكن حل هذه المشكلة بدون أي صيغ، وذلك ببساطة بناءً على معنى التقدم الحسابي. أضف وأضف... ساعة أو ساعتين.)

ووفقا للصيغة، سيستغرق الحل أقل من دقيقة. يمكنك تحديد الوقت.) فلنقرر.

توفر الشروط جميع البيانات لاستخدام الصيغة: أ 1 = 3، د = 1/6.يبقى لمعرفة ما هو متساو ن.لا شك! نحن بحاجة الى العثور عليها 121. لذلك نكتب:

يرجى الانتباه! بدلا من الفهرس نظهر رقم محدد: 121. وهو أمر منطقي تمامًا.) نحن مهتمون بعضو التقدم الحسابي العدد مائة وواحد وعشرون.هذا سيكون لنا ن.هذا هو المعنى ن= 121 سوف نعوض أكثر في الصيغة، بين قوسين. نستبدل جميع الأرقام في الصيغة ونحسب:

أ 121 = 3 + (121-1) 1/6 = 3+20 = 23

هذا كل شيء. وبنفس السرعة يمكن العثور على الحد الخمسمائة والعاشر، والألف والثالث، أي واحد. نضع بدلا من ذلك نالرقم المطلوب في فهرس الحرف " أ"وبين قوسين، ونحن نعول.

اسمحوا لي أن أذكرك بنقطة: هذه الصيغة تسمح لك بالعثور عليها أيمصطلح التقدم الحسابي برقمه" ن" .

دعونا نحل المشكلة بطريقة أكثر دهاءً. دعونا نواجه المشكلة التالية:

أوجد الحد الأول من المتوالية الحسابية (a n)، إذا كان a 17 = -2؛ د=-0.5.

لو واجهتك أي صعوبات سأخبرك بالخطوة الأولى. اكتب صيغة الحد النوني للمتتابعة الحسابية!نعم نعم. اكتب بيديك مباشرة في دفترك:

أ ن = أ 1 + (ن-1)د

والآن، بالنظر إلى أحرف الصيغة، نفهم ما هي البيانات التي لدينا وما هي البيانات المفقودة؟ متاح د=-0.5،هناك عضو السابع عشر...هل هذا هو؟ إذا كنت تعتقد أن هذا هو الحال، فلن تحل المشكلة، نعم...

لا يزال لدينا رقم ن! في حالة أ 17 = -2مختفي معلمتين.وهذه هي قيمة الحد السابع عشر (-2) ورقمه (17). أولئك. ن = 17.غالبًا ما ينزلق هذا "التافه" من الرأس، وبدونه (بدون "التافه"، وليس الرأس!) لا يمكن حل المشكلة. على الرغم من ... وبدون رأس أيضًا.)

الآن يمكننا ببساطة استبدال بياناتنا بغباء في الصيغة:

أ 17 = أ 1 + (17-1)·(-0.5)

أوه نعم، 17ونحن نعلم أنه -2. حسنًا، لنستبدل:

-2 = أ 1 + (17-1)·(-0.5)

هذا كل شيء في الأساس. يبقى التعبير عن الحد الأول للتقدم الحسابي من الصيغة وحسابه. الجواب سيكون: أ 1 = 6.

تعد هذه التقنية - كتابة صيغة واستبدال البيانات المعروفة ببساطة - مساعدة كبيرة في المهام البسيطة. حسنًا، بالطبع، يجب أن تكون قادرًا على التعبير عن متغير من صيغة، ولكن ماذا تفعل!؟ وبدون هذه المهارة لا يمكن دراسة الرياضيات على الإطلاق...

لغز شعبي آخر:

أوجد فرق المتتابعة الحسابية (a n)، إذا كانت a 1 = 2؛ أ 15 = 12.

ماذا نفعل؟ سوف تتفاجأ، نحن نكتب الصيغة!)

أ ن = أ 1 + (ن-1)د

لنتأمل فيما نعرفه: 1 =2؛ 15 = 12؛ و (سأسلط الضوء بشكل خاص!) ن = 15. لا تتردد في استبدال هذا في الصيغة:

12=2 + (15-1)د

نحن نفعل الحساب.)

12=2 + 14د

د=10/14 = 5/7

هذه هي الإجابة الصحيحة.

لذلك، المهام ل أ ن، أ 1و دمقرر. كل ما تبقى هو معرفة كيفية العثور على الرقم:

الرقم 99 هو عضو في المتتابعة الحسابية (a n)، حيث 1 = 12؛ د = 3. ابحث عن رقم هذا العضو

نعوض بالكميات المعروفة لدينا في صيغة الحد n:

أ ن = 12 + (ن-1) 3

للوهلة الأولى، هناك كميتين غير معروفتين هنا: ن و ن.لكن ن- هذا عضو في التقدم برقم ن...ونحن نعرف هذا العضو من التقدم! إنه 99. لا نعرف رقمه. ن،إذن هذا الرقم هو ما تحتاج إلى إيجاده. نستبدل مصطلح التقدم 99 في الصيغة:

99 = 12 + (ن-1) 3

نعبر عن الصيغة ننعتقد. نحصل على الجواب: ن = 30.

والآن مشكلة حول نفس الموضوع، ولكن أكثر إبداعا):

تحديد ما إذا كان الرقم 117 عضوًا في المتوالية الحسابية (أ ن):

-3,6; -2,4; -1,2 ...

دعونا نكتب الصيغة مرة أخرى. ماذا، لا توجد معلمات؟ حسنًا... لماذا أُعطينا عيونًا؟) هل نرى الفصل الأول من التقدم؟ نحن نرى. هذا هو -3.6. يمكنك الكتابة بأمان: أ 1 = -3.6.اختلاف دهل يمكنك معرفة ذلك من المسلسل؟ الأمر سهل إذا كنت تعرف ما هو الفرق بين التقدم الحسابي:

د = -2.4 - (-3.6) = 1.2

لذلك، قمنا بأبسط شيء. يبقى التعامل مع الرقم المجهول نوالعدد غير المفهوم 117. وفي المشكلة السابقة على الأقل كان معروفا أن مصطلح التتابع هو الذي ورد. لكننا هنا لا نعرف حتى... ماذا نفعل!؟ حسنًا، كيف تكون، كيف تكون... قم بتشغيل قدراتك الإبداعية!)

نحن يفترضأن 117 هو، بعد كل شيء، عضو في تقدمنا. مع عدد غير معروف ن. وكما في المسألة السابقة، فلنحاول العثور على هذا الرقم. أولئك. نكتب الصيغة (نعم، نعم!)) ونستبدل أرقامنا:

117 = -3.6 + (ن-1) 1.2

مرة أخرى نعبر عن الصيغةن، نحسب ونحصل على:

أُووبس! تبين الرقم كسور!مائة وواحد ونصف. والأعداد الكسرية في التقدم لا يحدث.ما هو الاستنتاج الذي يمكننا استخلاصه؟ نعم! رقم 117 ليس كذلكعضو في تقدمنا. وهو يقع في مكان ما بين الحدين المئة والأولى والمائة والثانية. إذا تبين أن العدد طبيعي، أي. هو عدد صحيح موجب، فإن الرقم سيكون عضوًا في التقدم مع الرقم الموجود. وفي حالتنا سيكون جواب المشكلة: لا.

مهمة مبنية على نسخة حقيقية من GIA:

يتم إعطاء التقدم الحسابي بالشرط:

ن = -4 + 6.8ن

أوجد الحدين الأول والعاشر من التقدم.

هنا يتم تعيين التقدم بطريقة غير عادية. نوع من الصيغة... يحدث ذلك.) ومع ذلك، هذه الصيغة (كما كتبت أعلاه) - وأيضا صيغة الحد النوني للتقدم الحسابي!كما أنها تسمح العثور على أي عضو في التقدم من خلال رقمه.

نحن نبحث عن العضو الأول. الشخص الذي يفكر. أن الحد الأول هو ناقص أربعة خطأ فادح!) لأن الصيغة في المشكلة تم تعديلها. الفصل الأول من المتوالية الحسابية فيه مختفي.لا بأس، سنجده الآن.)

كما في المسائل السابقة، نستبدل ن = 1في هذه الصيغة:

أ 1 = -4 + 6.8 1 = 2.8

هنا! الحد الأول هو 2.8 وليس -4!

ونبحث عن الحد العاشر بنفس الطريقة:

أ 10 = -4 + 6.8 10 = 64

هذا كل شيء.

والآن، بالنسبة لأولئك الذين قرأوا هذه السطور، المكافأة الموعودة.)

لنفترض، في موقف قتالي صعب في امتحان الدولة أو امتحان الدولة الموحد، أنك نسيت الصيغة المفيدة للحد التاسع من التقدم الحسابي. أتذكر شيئا، ولكن بطريقة غير مؤكدة إلى حد ما... أو نهناك، أو ن+1، أو ن-1...كيف تكون!؟

هادئ! من السهل استخلاص هذه الصيغة. إنها ليست صارمة للغاية، ولكنها بالتأكيد كافية للثقة واتخاذ القرار الصحيح!) للتوصل إلى نتيجة، يكفي أن تتذكر المعنى الأولي للتقدم الحسابي وأن يكون لديك بضع دقائق من الوقت. تحتاج فقط إلى رسم صورة. من أجل الوضوح.

ارسم خط أرقام وضع علامة على الرقم الأول عليه. الثانية والثالثة وما إلى ذلك. أعضاء. ونلاحظ الفرق دبين الأعضاء. مثله:

ننظر إلى الصورة ونفكر: ماذا يساوي الحد الثاني؟ ثانية واحد د:

أ 2 =أ1+ 1 د

ما هو المصطلح الثالث؟ ثالثالحد يساوي الحد الأول زائد اثنين د.

أ 3 =أ1+ 2 د

هل فهمت؟ ليس من قبيل الصدفة أن أسلط الضوء على بعض الكلمات بالخط العريض. حسنًا، خطوة أخرى).

ما هو الحد الرابع؟ الرابعالحد يساوي الحد الأول زائد ثلاثة د.

أ 4 =أ1+ 3 د

لقد حان الوقت لندرك أن عدد الفجوات، أي. د، دائماً واحد أقل من عدد العضو الذي تبحث عنه ن. أي إلى العدد ن، عدد المسافاتسوف ن-1.لذلك ستكون الصيغة (بدون اختلافات!):

أ ن = أ 1 + (ن-1)د

بشكل عام، الصور المرئية مفيدة جدًا في حل العديد من المشكلات في الرياضيات. لا تهمل الصور. ولكن إذا كان من الصعب رسم صورة، إذن... مجرد صيغة!) بالإضافة إلى ذلك، تتيح لك صيغة الحد n ربط ترسانة الرياضيات القوية بأكملها بالحل - المعادلات والمتباينات والأنظمة وما إلى ذلك. لا يمكنك إدراج صورة في المعادلة...

مهام الحل المستقل.

للإحماء:

1. في التقدم الحسابي (أ ن) أ 2 =3؛ أ 5 =5.1. العثور على 3.

تلميح: حسب الصورة، يمكن حل المشكلة في 20 ثانية... حسب الصيغة، يبدو الأمر أكثر صعوبة. ولكن لإتقان الصيغة، فهو أكثر فائدة.) في المادة 555، تم حل هذه المشكلة باستخدام كل من الصورة والصيغة. اشعر بالفرق!)

وهذا لم يعد الاحماء.)

2. في المتوالية الحسابية (أ ن) أ 85 = 19.1؛ أ 236 = 49, 3. أوجد أ 3 .

ماذا، ألا تريد رسم صورة؟) بالطبع! أفضل وفقا للصيغة، نعم ...

3. يتم إعطاء التقدم الحسابي بالشرط:أ 1 = -5.5؛ ن+1 = ن +0.5. أوجد الحد المائة والخامس والعشرين من هذا التقدم.

في هذه المهمة، يتم تحديد التقدم بطريقة متكررة. لكن العد حتى الحد المائة والخامس والعشرين... لا يستطيع الجميع القيام بمثل هذا العمل الفذ.) لكن صيغة الحد التاسع في متناول الجميع!

4. بالنظر إلى التقدم الحسابي (أ ن):

-148; -143,8; -139,6; -135,4, .....

أوجد رقم أصغر حد موجب للتقدم.

5. وفقًا لشروط المهمة 4، ابحث عن مجموع أصغر الحدود الإيجابية وأكبر الحدود السلبية للتقدم.

6. حاصل ضرب الحدين الخامس والثاني عشر من التقدم الحسابي المتزايد يساوي -2.5، ومجموع الحدين الثالث والحادي عشر يساوي صفرًا. العثور على 14 .

ليست المهمة الأسهل، نعم...) لن تعمل طريقة "أطراف الإصبع" هنا. سيكون عليك كتابة الصيغ وحل المعادلات.

الإجابات (في حالة من الفوضى):

3,7; 3,5; 2,2; 37; 2,7; 56,5

هل نجحت؟ إنه لطيف!)

ليس كل شيء يعمل؟ يحدث. بالمناسبة، هناك لحظة واحدة خفية في المهمة الأخيرة. ستكون هناك حاجة إلى الحذر عند قراءة المشكلة. والمنطق.

تمت مناقشة حل كل هذه المشكلات بالتفصيل في القسم 555. وعنصر الخيال للنقطة الرابعة، والنقطة الدقيقة للسادس، والأساليب العامة لحل أي مشاكل تتعلق بصيغة الحد النوني - تم وصف كل شيء. أنا أوصي به.

إذا أعجبك هذا الموقع...

بالمناسبة، لدي موقعين أكثر إثارة للاهتمام بالنسبة لك.)

يمكنك التدرب على حل الأمثلة ومعرفة مستواك. الاختبار مع التحقق الفوري. دعونا نتعلم - باهتمام!)

يمكنك التعرف على الوظائف والمشتقات.

يتعامل بعض الناس مع كلمة "التقدم" بحذر، باعتبارها مصطلحًا معقدًا جدًا من فروع الرياضيات العليا. وفي الوقت نفسه، فإن أبسط تقدم حسابي هو عمل عداد سيارات الأجرة (حيث لا يزال موجودا). وفهم الجوهر (وفي الرياضيات لا يوجد شيء أكثر أهمية من "الحصول على الجوهر") للتسلسل الحسابي ليس بالأمر الصعب، بعد تحليل بعض المفاهيم الأولية.

تسلسل الأرقام الرياضية

عادة ما يسمى التسلسل الرقمي بسلسلة من الأرقام، كل منها له رقم خاص به.

1 هو العضو الأول في التسلسل؛

و2 هو الحد الثاني من المتتابعة؛

و7 هو العضو السابع في التسلسل؛

و n هو العضو n في التسلسل؛

ومع ذلك، ليست أي مجموعة عشوائية من الأرقام والأرقام تهمنا. وسوف نركز اهتمامنا على المتتابعة العددية التي ترتبط فيها قيمة الحد النوني بعدده الترتيبي بعلاقة يمكن صياغتها رياضيا بشكل واضح. بمعنى آخر: القيمة العددية للرقم n هي إحدى وظائف n.

a هي قيمة عضو في التسلسل العددي؛

n هو رقمه التسلسلي؛

f(n) هي دالة، حيث الرقم الترتيبي في التسلسل الرقمي n هو الوسيطة.

تعريف

عادةً ما يُطلق على التقدم الحسابي اسم التسلسل العددي الذي يكون فيه كل حد لاحق أكبر (أقل) من الحد السابق بنفس الرقم. صيغة الحد النوني للمتتابعة الحسابية هي كما يلي:

أ ن - قيمة العضو الحالي في التقدم الحسابي؛

ن+1 - صيغة الرقم التالي؛

د - الفرق (عدد معين).

من السهل تحديد أنه إذا كان الفرق موجبًا (d>0)، فإن كل عضو لاحق في السلسلة قيد النظر سيكون أكبر من العضو السابق وسيتزايد مثل هذا التقدم الحسابي.

في الرسم البياني أدناه، من السهل معرفة سبب تسمية التسلسل الرقمي بـ "تزايد".

وفي الحالات التي يكون فيها الفرق سلبيا (د<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

قيمة العضو المحددة

في بعض الأحيان يكون من الضروري تحديد قيمة أي حد تعسفي n للتقدم الحسابي. ويمكن القيام بذلك عن طريق حساب قيم جميع أعضاء المتوالية الحسابية بشكل تسلسلي، بدءاً من الأول إلى المطلوب. ومع ذلك، فإن هذا المسار ليس مقبولًا دائمًا، على سبيل المثال، إذا كان من الضروري العثور على قيمة الحد خمسة آلاف أو ثمانية ملايين. سوف تستغرق الحسابات التقليدية الكثير من الوقت. ومع ذلك، يمكن دراسة تقدم حسابي محدد باستخدام صيغ معينة. هناك أيضًا صيغة للحد النوني: يمكن تحديد قيمة أي حد من المتوالية الحسابية على أنها مجموع الحد الأول من المتتابعة مع فرق المتتابعة مضروبًا في عدد الحد المطلوب مختزلًا بمقدار واحد.

الصيغة عالمية لزيادة وخفض التقدم.

مثال لحساب قيمة مصطلح معين

دعونا نحل المشكلة التالية لإيجاد قيمة الحد النوني للتقدم الحسابي.

الحالة: يوجد تقدم حسابي مع المعلمات:

الحد الأول من التسلسل هو 3؛

الفرق في سلسلة الأرقام هو 1.2.

المهمة: تحتاج إلى إيجاد قيمة 214 مصطلحًا

الحل: لتحديد قيمة حد معين، نستخدم الصيغة:

أ(ن) = أ1 + د(ن-1)

باستبدال البيانات من بيان المشكلة في التعبير، لدينا:

أ(214) = أ1 + د(ن-1)

أ(214) = 3 + 1.2 (214-1) = 258.6

الإجابة: الحد 214 من المتتابعة يساوي 258.6.

مزايا طريقة الحساب هذه واضحة - الحل بأكمله لا يستغرق أكثر من سطرين.

مجموع عدد معين من المصطلحات

في كثير من الأحيان، في سلسلة حسابية معينة، من الضروري تحديد مجموع قيم بعض قطاعاتها. للقيام بذلك، ليست هناك حاجة أيضًا لحساب قيم كل مصطلح ثم جمعها. تنطبق هذه الطريقة إذا كان عدد المصطلحات التي يجب العثور على مجموعها صغيرًا. وفي حالات أخرى، يكون من الملائم أكثر استخدام الصيغة التالية.

مجموع حدود المتتابعة الحسابية من 1 إلى n يساوي مجموع الحدين الأول والنوني مضروبًا في عدد الحد n مقسومًا على اثنين. إذا تم استبدال قيمة الحد n في الصيغة بالتعبير من الفقرة السابقة من المقالة، نحصل على:

مثال للحساب

على سبيل المثال، دعونا نحل مشكلة بالشروط التالية:

الحد الأول من المتتابعة هو صفر؛

الفرق هو 0.5.

تتطلب المشكلة تحديد مجموع حدود المتسلسلة من 56 إلى 101.

حل. دعنا نستخدم الصيغة لتحديد مقدار التقدم:

ق(ن) = (2∙أ1 + د∙(ن-1))∙ن/2

أولاً، نحدد مجموع قيم 101 حدًا للتقدم عن طريق استبدال الشروط المعطاة لمشكلتنا في الصيغة:

ق 101 = (2∙0 + 0.5∙(101-1))∙101/2 = 2,525

من الواضح أنه من أجل معرفة مجموع شروط التقدم من 56 إلى 101، من الضروري طرح S 55 من S 101.

ق 55 = (2∙0 + 0.5∙(55-1))∙55/2 = 742.5

وبالتالي فإن مجموع التقدم الحسابي لهذا المثال هو:

ق 101 - ق 55 = 2,525 - 742,5 = 1,782,5

مثال على التطبيق العملي للتقدم الحسابي

في نهاية المقال، نعود إلى مثال التسلسل الحسابي الوارد في الفقرة الأولى - عداد التاكسي (عداد سيارة الأجرة). دعونا نفكر في هذا المثال.

تبلغ تكلفة ركوب سيارة الأجرة (التي تشمل مسافة 3 كيلومترات) 50 روبل. يتم دفع كل كيلومتر لاحق بمعدل 22 روبل / كم. مسافة السفر 30 كم. احسب تكلفة الرحلة.

1. دعونا نتخلص من أول 3 كيلومترات، والتي يتم تضمين سعرها في تكلفة الهبوط.

30 - 3 = 27 كم.

2. الحساب الإضافي ليس أكثر من تحليل سلسلة أرقام حسابية.

رقم العضو - عدد الكيلومترات المقطوعة (مطروحًا منها الثلاثة الأولى).

قيمة العضو هو المبلغ.

الحد الأول في هذه المسألة سيكون مساوياً لـ 1 = 50 روبل.

فرق التقدم د = 22 ص.

الرقم الذي يهمنا هو قيمة الحد (27+1) من المتتابعة الحسابية - قراءة العداد في نهاية الكيلومتر السابع والعشرين هي 27.999... = 28 كم.

أ 28 = 50 + 22 ∙ (28 - 1) = 644

تعتمد حسابات بيانات التقويم لفترة طويلة بشكل عشوائي على صيغ تصف تسلسلات رقمية معينة. في علم الفلك، يعتمد طول المدار هندسيًا على مسافة الجسم السماوي إلى النجم. بالإضافة إلى ذلك، يتم استخدام سلاسل الأرقام المختلفة بنجاح في الإحصاء والمجالات التطبيقية الأخرى في الرياضيات.

نوع آخر من التسلسل الرقمي هو هندسي

يتميز التقدم الهندسي بمعدلات تغيير أكبر مقارنة بالتقدم الحسابي. وليس من قبيل المصادفة أنه في السياسة وعلم الاجتماع والطب، من أجل إظهار السرعة العالية لانتشار ظاهرة معينة، على سبيل المثال، مرض أثناء الوباء، يقولون إن العملية تتطور في تقدم هندسي.

يختلف الحد N من سلسلة الأرقام الهندسية عن الحد السابق من حيث أنه مضروب في بعض الأرقام الثابتة - المقام، على سبيل المثال، الحد الأول هو 1، والمقام يساوي 2، ثم:

ن=1: 1 ∙ 2 = 2

ن=2: 2 ∙ 2 = 4

ن=3: 4 ∙ 2 = 8

ن=4: 8 ∙ 2 = 16

ن=5: 16 ∙ 2 = 32،

ب ن - قيمة الحد الحالي للتقدم الهندسي؛

ب ن+1 - صيغة الحد التالي من التقدم الهندسي؛

q هو مقام التقدم الهندسي (رقم ثابت).

إذا كان الرسم البياني للتقدم الحسابي عبارة عن خط مستقيم، فإن التقدم الهندسي يرسم صورة مختلفة قليلاً:

كما هو الحال في الحساب، فإن التقدم الهندسي له صيغة لقيمة حد عشوائي. أي حد نوني من المتتابعة الهندسية يساوي حاصل ضرب الحد الأول ومقام المتتابعة إلى أس n مخصومًا بواحد:

مثال. لدينا تقدم هندسي حيث الحد الأول يساوي 3 ومقام التقدم يساوي 1.5. دعونا نجد الحد الخامس من التقدم

ب 5 = ب 1 ∙ ف (5-1) = 3 ∙ 1.5 4 = 15.1875

يتم أيضًا حساب مجموع عدد معين من المصطلحات باستخدام صيغة خاصة. مجموع الحدود n الأولى للتقدم الهندسي يساوي الفرق بين منتج الحد n للتقدم ومقامه والحد الأول للتقدم، مقسومًا على المقام مخفضًا بواحد:

إذا تم استبدال b n باستخدام الصيغة التي تمت مناقشتها أعلاه، فإن قيمة مجموع حدود n الأولى من سلسلة الأرقام قيد النظر سوف تأخذ الشكل:

مثال. يبدأ التقدم الهندسي بالحد الأول الذي يساوي 1. والمقام مضبوط على 3. فلنوجد مجموع الحدود الثمانية الأولى.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3280