Что давление в жидкости. Давление в жидкости и газе

Как известно, сила тяжести действует на все тела на Земле: и на твердые, и на жидкие, и на газообразные.
Рассмотрим жидкости. Нальем в сосуд, у которого вместо дна гибкая мембрана, воду. Мы наблюдаем, как резиновая пленка начинает прогибаться. Нетрудно догадаться, что под действием силы тяжести вес столба жидкости давит на дно сосуда. Причем, чем выше уровень налитой жидкости, тем больше растягивается резиновая мембрана. После того, как резиновое дно прогнулось, вода останавливается (приходит в равновесие), так как кроме силы тяжести, на воду действует сила упругости резиновой мембраны, которые и уравновешивают силу давления воды на дно.
Рассмотрим, давит ли жидкость на стенки сосуда? Возьмем сосуд с отверстиями в боковой стенке. Нальем в него воду. И быстро откроем отверстия. Мы наблюдаем картину, очень похожую на опыт с шаром Паскаля. Но при этом никакого внешнего давления на жидкость мы не оказывали. Для объяснения этого опыта необходимо вспомнить закон Паскаля.
Каждый слой жидкости, каждая молекула своим весом давит на нижние слои. При этом согласно закону Паскаля, это давление передается по всем направлениям и одинаково, в отличие от твердых тел, вес которых действует только в одном направлении. Так на нижние слои жидкости в сосуде действует большее количество молекул жидкости, чем на верхние — давление в нижней части сосуда больше. И как результат, напор воды из нижнего отверстия значительно больше.
Проведем еще один опыт. Поместим в большой сосуд с водой колбу с отпадающим дном. Для этого вначале плотно прижмем дно с помощью веревки. Когда сосуд окажется в воде, можно отпустить веревку. Что же плотно прижало дно к цилиндрическому сосуду? Дно к стенкам сосуда прижало давление воды, которое действует снизу вверх.
Теперь медленно и аккуратно начнем доливать воду в пустой сосуд. Как только уровни жидкостей в обоих сосудах станут одинаковыми, дно отпадет от сосуда.
Так как силы давления воды внутри цилиндра и снаружи стали одинаковыми, дно будет вести себя так же, как и в воздухе - как только мы отпустим веревку, дно будет отпадать вследствие земного притяжения.
В момент отрыва на дно давит сверху вниз столб жидкости в сосуде, а снизу вверх на дно передается давление такого же по высоте столба жидкости, но находящегося в банке.
Все эти опыты также можно провести и с другими жидкостями. Результат будет одинаковым.
Опытным путем, мы установили, что внутри жидкости существует давление. На одном и том же уровне оно одинаково по всем направлениям. С глубиной давление увеличивается. Газы также имеют вес, этим и обусловлены схожие свойства передачи давления, как у жидкостей, так и у газов. Однако у газа плотность, по сравнению с жидкостью, значительно меньше. Поговорим еще об одном удивительном, и, казалось бы, невозможном явлении, которое получило название «гидростатический парадокс». Воспользуемся специальным прибором для демонстрации этого явления.
Используем в опыте три сосуда разной формы, заполненные жидкостью до одного уровня. Площадь дна всех сосудов одинакова и закрыта резиновой мембраной. Налитая жидкость растягивает мембрану. Прогибаясь, резиновая пленка давит на рычаг и отклоняет стрелку прибора.
Стрелка прибора во всех трех случаях отклоняется одинаково. Значит давление, создаваемое жидкостью, одинаковое и не зависит от веса налитой жидкости. Этот факт получил название гидростатического парадокса. Он объясняется тем, что жидкость, в отличие от твердых тел, часть давления передаст также стенкам сосудов.

Лекция 6. Элементы механики жидкостей.

Гл. 6, §28-31

План лекции

    Давление в жидкости и газе.

    Уравнение неразрывности. Уравнение Бернулли.

    Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей.

    Давление в жидкости и газе.

Молекулы газа, двигаясь хаотически, почти или вообще не связаны между собой силами взаимодействия, поэтому они движутся свободно и в результате соударений стремятся во все стороны, заполняя весь предоставленный им объем, т.е. объем газа определяется объемом того сосуда, который газ занимает.

Как и газ, жидкость принимает форму того сосуда, в котором находится, но среднее расстояние между молекулами остается практически постоянным, поэтому объем жидкости практически не меняется.

Хотя свойства жидкостей и газов во многом отличаются, в ряде механических явлений их поведение описывается одинаковыми параметрами и идентичными уравнениями. Поэтому гидроаэромеханика - раздел механики, изучающий движение жидкостей и газов, их взаимодействие с обтекаемыми ими твердыми телами, - использует единый подход к изучению жидкостей и газов.

Основные задачи современной гидроаэромеханики:

    выяснение оптимальной формы тел, движущихся в жидкостях или газах;

    оптимальное профилирование проточных каналов различных газовых и жидкостных машин;

    подбор оптимальных параметров самих жидкостей и газов;

    исследование движения атмосферного воздуха, морских и океанских течений.

Вклад отечественных ученых:

Если в покоящуюся жидкость поместить тонкую пластинку, то части жидкости, находящиеся по разные стороны от нее, действуют на пластинку с силами , равными по модулю и направленными площадке S независимо от ее ориентации, т.к. наличие касательных сил привело бы частицы жидкости в движение.

Давление жидкости - это физическая величина, равная отношению нормальной силы, действующей со стороны жидкости на некоторую площадь, к этой площади.

1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1м 2 .

Давление при равновесии жидкостей подчиняется закону Паскаля : давление, оказываемое внешними силами на жидкость (или газ), передается по всем направлениям без изменений.

Гидростатическое давление

- гидростатическое давление

Согласно полученной формуле, сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует выталкивающая сила, определяемая законом Архимеда.

Закон Архимеда : на тело, погруженное в жидкость (или газ) действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости, вытесненной телом.

Подъемной силой называют разность между выталкивающей силой и силой тяжести.

.

    Уравнение неразрывности. Уравнение Бернулли.

Уравнение неразрывности.

Идеальная жидкость - это абстрактная жидкость, не обладающая вязкостью, теплопроводностью, способностью к электризации и намагничиванию.

Такое приближение допустимо для маловязкой жидкости. Течение жидкости называется стационарным, если вектор скорости в каждой точке пространства остается постоянным.

Графически движение жидкостей изображается с помощью линий тока.

Линии тока жидкости - это линии, в каждой точке которых вектор скорости частиц жидкости направлен по касательной (рис. 4).

Линии тока проводят так, чтобы число линий, проведенных через некоторую единичную площадку,  потоку, было численно равно или пропорционально скорости жидкости в данном месте.

Часть жидкости, ограниченная линиями тока, называется трубкой тока .

Т.к. скорость частиц жидкости направлена по касательной к стенкам трубки тока, частицы жидкости не выходят из трубки тока, т.е. трубка - как жесткая конструкция. Трубки тока могут сужаться или расширяться в зависимости от скорости жидкости, хотя масса жидкости, протекающей через некоторое сечение,  ее течению, за определенный промежуток времени будет постоянной.

Т.к. жидкость несжимаема, черезS 1 и S 2 пройдет за t одинаковая масса жидкости (рис. 5).

Уравнение неразрывности струи или теорема Эйлера.

Произведение скорости течения несжимаемой жидкости и площади поперечного сечения одной и той же трубки тока постоянно.

Теорема о неразрывности широко применяется при расчетах, связанных с подачей жидкого топлива в двигатели по трубам переменного сечения. Зависимость скорости потока от сечения канала, по которому течет жидкость или газ, используется при конструировании сопла ракетного двигателя. В месте сужения сопла (рис. 6) скорость истекающих из ракеты продуктов сгорания резко возрастает, а давление падает, благодаря чему возникает дополнительная сила тяги.

Уравнение Бернулли.

Пусть жидкость движется в поле сил тяжести так, что в данной точке пространства величина и направление скорости жидкости остаются постоянными. Такое течение называется стационарным. В стационарно текущей жидкости кроме сил тяжести действуют еще и силы давления. Выделим в стационарном потоке участок трубки тока, ограниченный сечениямиS 1 и S 2 (рис.7)

За время t этот объем переместится вдоль трубки тока, причем сечение S 1 переместится в положение 1", пройдя путь , аS 2 - в положение 2", пройдя путь . В силу неразрывности струи выделенные объемы (и их массы) одинаковы:

,
.

Энергия каждой частицы жидкости слагается из ее кинетической и потенциальной энергий в поле сил земного тяготения. Вследствие стационарности течения частица, находящаяся через t в любой из точек незаштрихованной части рассматриваемого объема, имеет такую же скорость, и, следовательно W к , какую имела частица, находившаяся в той же точке в начальный момент времени. Поэтому изменение энергии всего рассматриваемого объема можно вычислить как разность энергий заштрихованных объемов V 1 и V 2 .

Возьмем сечение трубки тока и отрезки
настолько малыми, чтобы всем точкам каждого из заштрихованных объемов можно было приписать одно и то же значение скорости, давления и высоты. Тогда приращение энергии равно:

В идеальной жидкости трение отсутствует, поэтому W должно равняться работе, совершенной над выделенным объемом силами давления:

(«-» т.к. направлена в сторону, противоположную перемещению)

,
,

,

Сократим на V и перегруппируем члены:

,

сечения S 1 и S 2 были выбраны произвольно, поэтому можно утверждать, что в любом сечении трубки тока

(1)

Выражение (1) представляет собой уравнение Бернулли . В стационарно текущей идеальной жидкости вдоль любой линии тока выполняется условие (1).

Для горизонтальной линии тока
,

Уравнение Бернулли достаточно хорошо выполняется для реальных жидкостей, внутреннее трение в которых не очень велико.

Уменьшение давления в точках, где скорость потока больше, положено в основу устройства водоструйного насоса.

Выводы этого уравнения учитываются при расчетах конструкций насосов систем подачи жидкого топлива в двигатели.

    Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей.

Сила внутреннего трения.

Вязкостью жидкостей и газов называется свойство их оказывать сопротивление перемещению одних слоев относительно других.

Вязкость обусловлена возникновением сил внутреннего трения между слоями движущихся жидкостей и газов, имеющих электромагнитное происхождение.

Уравнение гидродинамики вязкой жидкости было установлено Ньютоном в 1687 г.

- модуль силы внутреннего трения

Градиент скорости показывает, как быстро меняется скорость при переходе от слоя к слою в направленииz, перпендикулярном направлению движения слоев.

- вязкость или динамическая вязкость.

Физический смысл -

Величина зависит от молекулярного строения вещества и температуры:

У газов с ростом температуры увеличивается, т.к. возрастают скорости движения молекул и усиливается их взаимодействие. В результате возрастает обмен молекулами между движущимися слоями газа, которые переносят импульс от слоя к слою. Поэтому медленные слои ускоряются, а быстрые замедляются, -увеличивается.

У жидкостей с ростом температуры ослабевает межмолекулярное взаимодействие и увеличивается расстояние между молекулами, - уменьшается.

- коэффициент кинематической вязкости

.

Вязкость жидкостей и газов определяют с помощью вискозиметров.

От величины вязкости топлива зависит скорость его течения по трубопроводу, а так же величина теплоотдачи жидкости или газа стенкам трубопровода, поэтому топлива и охладителей учитывается при конструировании систем подачи топлива и охлаждающих систем двигателей.

Ламинарный и турбулентный режимы течения.

В зависимости от скорости потока течение жидкости или газа может быть ламинарным или турбулентным.

Ламинарное течение (лат. «ламина» - полоска) - течение, при котором жидкость или газ перемещаются слоями, параллельными направлению течения, причем это слои не перемешиваются друг с другом.

Ламинарное течение стационарно, бывает либо при большой , либо при малой .

Турбулентным называется течение, при котором в жидкости (или газе) образуются многочисленные вихри различных размеров, вследствие чего давление, плотность и скорость течения непрерывно изменяется.

Турбулентное течение нестационарно, преобладает на практике.

Жидкость в гидравлике рассматривают как сплошную среду без пустот и промежутков. Кроме того, не учитывают влияние отдельных молекул, то есть даже бесконечно малые частицы жидкости считают состоящими из весьма большого количества молекул.

Из курса физики известно, что вследствие текучести жидкости, т.е. подвижности ее частиц, она не воспринимает сосредоточенные силы. Поэтому в жидкости действуют только распределенные силы, причем эти силы могут распределяться по объему жидкости(массовые или объемные силы) или по поверхности (поверхностные силы).

Объемные (массовые) силы

К объемным (массовым) силам относятся силы тяжести и силы инерции. Они пропорциональны массе и подчиняются второму закону Ньютона.

Поверхностные силы

К поверхностным силам следует отнести силы, с которыми воздействуют на жидкость соседние объемы жидкости или тела, так как это воздействие осуществляется через поверхности. Рассмотрим их подробнее.

Пусть на плоскую поверхность площадью S под произвольным углом действует сила R

Силу R можно разложить на тангенциальную Т и нормальную F составляющие.

Сила трения

Тангенциальная составляющая называется силой трения Т и вызывает в жидкости касательные напряжения (или напряжения трения):

Единицей измерения касательных напряжений в системе СИ является Паскаль (Па) - ньютон, отнесенный к квадратному метру (1 Па = 1 Н/м 2).

Давление в жидкости

Нормальная сила F называется силой давления и вызывает в жидкости нормальные напряжения сжатия, которые определяются отношением:

Нормальные напряжения, возникающие в жидкости под действием внешних сил, называются гидромеханическим давлением или просто давлением.

Системы отсчета давления

Рассмотрим системы отсчета давления. Важным при решении практических задач является выбор системы отсчета давления (шкалы давления). За начало шкалы может быть принят абсолютный нуль давления. При отсчете давлений от этого нуля их называют абсолютными - P абс .

Однако, как показывает практика, технические задачи удобнее решать, используя избыточные давления P изб , т.е. когда за начало шкалы принимается атмосферное давление.

Давление, которое отсчитывается "вниз" от атмосферного нуля, называется давлением вакуума P вак , или вакуумом.

P абс = P атм + P изб

где P атм - атмосферное давление, измеренное барометром.

Связь между абсолютным давлением P абс и давлением вакуума P вак можно установить аналогичным путем:

P абс = P атм - P вак

И избыточное давление, и вакуум отсчитываются от одного нуля (P атм ), но в разные стороны.

Таким образом, абсолютное, избыточное и вакуумное давления связаны и позволяют пересчитать одно в другое.

Единицы измерения давления

Практика показала, что для решения технических (прикладных) задач наиболее удобно использовать избыточные давления. Основной единицей измерения давления в системе СИ является паскаль (Па), который равен давлению, возникающему при действии силы в 1 Н на площадь размером 1 м2 (1 Па = 1 Н/м2).

Однако чаще используются более крупные единицы: килопаскаль (1 кПа = 10 3 Па) и мегапаскаль (1 МПа = 10 6 Па).

В технике широкое распространение получила внесистемная единица - техническая атмосфера (ат), которая равна давлению, возникающему при действии силы в 1 кгс на площадь размером 1 см 2 (1 ат = 1 кгс/см 2).

Соотношения между наиболее используемыми единицами следующие:

10 ат = 0,981 МПа ≈ 1 МПа или 1 ат = 98,1 кПа ≈ 100 кПа.

В зарубежной литературе используется также единица измерения давления бар

(1 бар = 105 Па).

В каких ещё единицах измеряется давление, можно посмотреть

Рассмотрим некоторые свойства жидкостей, которые оказывают наиболее существенное влияние на происходящие в них процессы и поэтому учитываются при расчетах гидравлических систем.

Плотность и удельный вес

Важнейшими характеристиками механических свойств жидкости являются ее плотность и удельный вес. Они определяют "весомость" жидкости.

Под плотностью ρ (кг/м 3) понимают массу жидкости m , заключенную в единице ее объема V, т.е.

Вместо плотности в формулах может быть использован также удельный вес γ (Н/м 3), т.е. вес G = m⋅g, приходящийся на единицу объема V:

γ = G / V = m⋅g / V = ρ⋅g

Изменения плотности и удельного веса жидкости при изменении температуры и давления незначительны, и в большинстве случаев их не учитывают.

Плотности наиболее употребляемых жидкостей и газов (кг/м 3):

Вязкость

Вязкость - это способность жидкости сопротивляться сдвигу, т. е. свойство, обратное текучести (более вязкие жидкости являются менее текучими). Вязкость проявляется в возникновении касательных напряжений (напряжений трения).

Рассмотрим слоистое течение жидкости вдоль стенки (рисунок)

В этом случае происходит торможение потока жидкости, обусловленное ее вязкостью. Причем скорость движения жидкости в слое тем ниже, чем ближе он расположен к стенке. Согласно гипотезе Ньютона касательное напряжение, возникающее в слое жидкости на расстоянии у от стенки, определяется зависимостью:

Закон трения Ньютона

= μ⋅ dv
dy

где dv/dy - градиент скорости, характеризующий интенсивность нарастания скорости v при удалении от стенки (по оси у), μ ‑ динамическая вязкость жидкости.

Течения большинства жидкостей, используемых в гидравлических системах, подчиняются закону трения Ньютона, и их называют ньютоновскими жидкостями.

Однако следует иметь в виду, что существуют жидкости, в которых закон Ньютона в той или иной степени нарушается. Такие жидкости называют неньютоновскими.

Величина μ, входящая в формулу (динамическая вязкость жидкости), измеряется в Пас либо в пуазах 1 П = 0.1 Пас. Пуа́з (обозначение: П, до 1978 года пз; международное - P; от фр. poise) - единица динамической вязкости в системе единиц СГС. Один пуаз равен вязкости жидкости, оказывающей сопротивление силой в 1 дину взаимному перемещению двух слоев жидкости площадью 1 см², находящихся на расстоянии 1 см друг от друга и взаимно перемещающихся с относительной скоростью 1 см/с.

1 П = 1 г / (см·с) = 0,1 Н·с/м²

Единица названа в честь Ж. Л. М. Пуазёйля. Пуаз имеет аналог в системе СИ - паскаль-секунда (Па·c).

1 Па·c = 10 П

Вода при температуре 20 °C имеет вязкость 0,01002 П, или около 1 сантипуаза.

Однако на практике более широкое применение нашла

Кинематическая вязкость:

ν =   μ
ρ

Единицей измерения последней в системе СИ является м 2 /с или более мелкая единица - см 2 /с, которую принято называть стоксом, 1 Ст = 1 см 2 /с. Для измерения вязкости также используются сантистоксы: 1 сСт = 0,01 Ст.

Вязкость жидкостей существенно зависит от температуры, причем вязкость капельных жидкостей с повышением температуры падает, а вязкость газов - растет (см. рисунок).

Это объясняется тем, что в капельных жидкостях, где молекулы расположены близко друг к другу, вязкость обусловлена силами молекулярного сцепления. Эти силы с ростом температуры ослабевают, и вязкость падает. В газах молекулы располагаются значительно дальше друг от друга. Вязкость газа зависит от интенсивности хаотичного движения молекул. С ростом температуры эта интенсивность растет и вязкость газа увеличивается.

Вязкость жидкостей зависит также от давления, но это изменение незначительно, и в большинстве случаев его не учитывают.

Сжимаемость

Сжимаемость - это способность жидкости изменять свой объем под действием давления. Сжимаемость капельных жидкостей и газов существенно различается. Так, капельные жидкости при изменении давления изменяют свой объем крайне незначительно. Газы, наоборот, могут значительно сжиматься под действием давления и неограниченно расширяться при его отсутствии.

Для учета сжимаемости газов при различных условиях могут быть использованы уравнения состояния газа или зависимости для политропных процессов.

Сжимаемость капельных жидкостей характеризуется коэффициентом объемного сжатия β р (Па -1):

где dV - изменение объема под действием давления; dр - изменение давления; V - объем жидкости.

Знак "минус" в формуле обусловлен тем, что при увеличении давления объем жидкости уменьшается, т.е. положительное приращение давления вызывает отрицательное приращение объема.

При конечных приращениях давления и известном начальном объеме V 0 можно определить конечный объем жидкости:

V 1 = V 0 ·(1 - β р ·Δp)

а также ее плотность

Величина, обратная коэффициенту объемного сжатия β р, называется объемным модулем упругости жидкости (или модулем упругости ) К = 1/ β р (Па).

Эта величина входит в обобщенный закон Гука, связывающий изменение давления с изменением объема

ΔV = - Δp
v K

Модуль упругости капельных жидкостей изменяется при изменении температуры и давления. Однако в большинстве случаев K считают постоянной величиной, принимая за нее среднее значение в данном диапазоне температур или давлений.

Модули упругости некоторых жидкостей (МПа):

Температурное расширение

Способность жидкости изменять свой объем при изменении температуры называется температурным расширением. Оно характеризуется коэффициентом температурного расширения β t:

где dT- изменение температуры; dV- изменение объема под действием температуры; V - объем жидкости.

При конечных приращениях температуры:

V 1 = V 0 ·(1 + β t ·ΔT)

Как видно из формул, с увеличением температуры объем жидкости возрастает, а плотность уменьшается.

Коэффициент температурного расширения жидкостей зависит от давления и температуры:

То есть при разных условиях коэффициент температурного расширения изменился в 50 раз. Однако на практике обычно принимают среднее значение в данном диапазоне температур и давления.Например, для минеральных масел β t ≈ 800·10 -6 1/град.

Газы весьма значительно изменяют свой объем при изменении температуры. Для учета этого изменения используют уравнения состояния газов или формулы политропных процессов.

Испаряемость

Любая капельная жидкость способна изменять свое агрегатное состояние, в частности превращаться в пар. Это свойство капельных жидкостей называют испаряемостью. В гидравлике наибольшее значение имеет условие, при котором начинается интенсивное парообразование по всему объему - кипение жидкости.

Для начала процесса кипения должны быть созданы определенные условия (температура и давление). Например, дистиллированная вода закипает при нормальном атмосферном давлении и температуре 100°С. Однако это является частным случаем кипения воды. Та же вода может закипеть при другой температуре, если она будет находиться под воздействием другого давления, т. е. для каждого значения температуры жидкости, используемой в гидросистеме, существует свое давление, при котором она закипает.

Давление при котором жидкость закипает, называют давлением насыщенных паров (p н.п.).

Величина p н.п. всегда приводится как абсолютное давление и зависит от температуры.

Для примера на рисунке приведена зависимость давления насыщенных паров воды от температуры.

На графике выделена точка А, соответствующая температуре 100°С и нормальному атмосферному давлению р а. Если на свободной поверхности воды создать более высокое давление р 1 , то она закипит при более высокой температуре Т 1 (точка В на рисунке). И наоборот, при малом давлении р 2 вода закипает при более низкой температуре Т 2 (точка С).

Растворимость газов

Многие жидкости способны растворять в себе газы. Эта способность характеризуется количеством растворенного газа в единице объема жидкости, различается для разных жидкостей и изменяется с увеличением давления.

Относительный объем газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри прямо пропорциональным давлению, то есть:

где V г - объем растворенного газа, приведенный к нормальным условиям (p 0 , Т 0);
V ж - объем жидкости;
k - коэффициент растворимости;
р - давление жидкости.

Коэффициент k имеет следующие значения при 20°С:

При понижении давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворяется в ней. Это явление может отрицательно сказывается на работе гидросистем.

Силу, действующую перпендикулярно опоре, называют силой давления.

Давлением (р ) называют отношение модуля F силы давления, действующей на опору, к площади S поверхности этой опоры: p = F / S

В СИ единица давления носит название паскаль (Па): 1 Па = 1 Н/м 2 .

Давление – физическая величина, равная отношению силы к площади поверхности, перпендикулярно которой эта сила действует. Давление характеризует силу, приходящуюся на каждую единицу площади её приложения.

Давление газа

Все газы вне зависимости от того, находятся они в сосуде или нет, постоянно оказывают давление на окружающие их тела. Давление газа в закрытом сосуде возрастает при увеличении плотности или температуры газа .

Состояние газа при низком давлении называется вакуум ом.

Закон Паскаля (для газа): Воздух передаёт оказываемое на него давление во всех направлениях одинаково.

Атмосферное давление

Сила, с которой столб атмосферного воздуха давит на земную поверхность, равна силе тяжести: Р = M*g , где М - масса столба воздуха.

Давление воздуха на поверхность Земли (на уровне моря) почти не изменяется и в среднем равно: р атм = 101 325 Н/м 2 = 0,1 МПа . Это давление называют нормальным атмосферным давлением . Его существование объясняется притяжением атмосферного воздуха к Земле.

Давление жидкости. Гидростатика

Давление жидкости на покоящееся в ней тело называют гидростатическим давлением . Оно прямо пропорционально плотности и высоте слоя (столба) жидкости. Науку, изучающую давление жидкостей, называют гидростатикой.

Гидростатическое давление на глубине h равно p = p атм + p*g*h

Закон Паскаля : давление, оказываемое на покоящиеся жидкости или газы, передается без изменения во все части этих жидкостей или газов. Жидкость и газ передают оказываемое на них давление во всех направлениях одинаково .

Вне зависимости от формы и размеров сосуда давление внутри жидкости на одной и той же глубине одинаково.

Приборы для измерения давления

Барометр – прибор для измерения атмосферного давления. Нормальным атмосферным давлением называют такое давление, которое уравновешивается столбом ртути высотой 760 мм рт.ст. при температуре 0°С : р атм = 0,1 МПа . Существуют ртутные барометры и барометры-анероиды (безжидкостные барометры)

Понижение атмосферного давления, как правило, предвещает ухудшение погоды и наоборот. По мере подъёма над поверхностью Земли атмосферное давление понижается приблизительно на 1 мм рт. ст. на каждые 10,5 м подъёма. Приборы для измерения давлений ниже атмосферного, называются вакуумметр ами.

Манометр – прибор для измерения давления внутри закрытых сосудов. Как правило, манометр измеряет разность давления в сосуде и атмосферного давления. Существуют открытые U-образные жидкостные манометры, а также безжидкостные (деформационные) манометры.

Жидкостные манометры основаны на измерении разности высот столбов однородной жидкости в сообщающихся сосудах, один из которых находится под действием атмосферного давления. Измеряемая разность давлений равна p 1 p атм = p*g*D*h

Решение задач

Практика : .

Практика : .

Таблицы и схемы по теме «Давление тел, жидкостей и газов»

Молекулы газа, совершая беспорядочное, хаотическое движение, не связаны или весьма слабо связаны силами взаимодей­ствия, поэтому они движутся свободно и в результате соударений стремятся раз­лететься во все стороны, заполняя весь предоставленный им объем, т. е. объем газа определяется объемом того сосуда, который газ занимает.

Как и газ, жидкость принимает форму того сосуда, в который она заключена. Но в жидкостях в отличие от газов среднее расстояние между молекулами остается практически постоянным, поэтому жид­кость обладает практически неизменным объемом.

Хотя свойства жидкостей и газов во многом отличаются, в ряде механических явлений их поведение определяется одина­ковыми параметрами и идентичными урав­нениями. Поэтому гидроаэромеханика - раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимо­действие между собой и обтекаемыми ими твердыми телами, - использует единый подход к изучению жидкостей и газов.

В механике с большой степенью точно­сти жидкости и газы рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плот­ность жидкости мало зависит от давления. Плотность же газов от давления зависит существенно. Из опыта известно, что сжи­маемостью жидкости и газа во многих за­дачах можно пренебречь и пользоваться единым понятием несжимаемой жидкости- жидкости, плотность которой всюду одинакова и не изменяется со временем.

Если в покоящуюся жидкость по­местить тонкую пластинку, то части жид­кости, находящиеся по разные стороны от нее, будут действовать на каждый ее эле­мент ΔS с силами Δ , которые независимо от того, как пластинка ориентирована, будут равны по модулю и направлены перпендикулярно площадке ΔS , так как наличие касательных сил привело бы частицы жидкости в движение.

Физическая величина, определяемая нормальной силой F n , действующей со сторо­ны жидкости на единицу площади, назы­вается давлениемр жидкости (p = F n /S ).

Единица давления - Паскаль(Па): 1 Па равен давлению, создаваемому си­лой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1м 2 .

Внесистемными единицами давления считаются 1 Бар = 10 5 Па, 1 физическая атмосфера (1 атм =760 мм. рт. ст., где 1 мм. рт. ст. =133 Па).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля : давление в любом месте покоящейся жид­кости одинаково по всем направлениям, причем давление одинаково передается по всему объему, занятому покоящейся жид­костью.

Рассмотрим, как влияет вес жидкости на распределение давления внутри покоя­щейся несжимаемой жидкости. При рав­новесии жидкости давление по горизонта­ли всегда одинаково, иначе не было бы равновесия. Поэтому свободная повер­хность покоящейся жидкости всегда гори­зонтальна вдали от стенок сосуда. Если жидкость несжимаема, то ее плотность не зависит от давления. Тогда при попере­чном сечении S столба жидкости, его вы­соте h и плотности ρ вес P = ρgSh, а дав­ление на нижнее основание

p = P/S = ρgSh/S = ρgh , (6.1)

т. е. давление изменяется линейно с высо­той. Давление ρgh называется гидростати­ческим давлением.

Согласно формуле (6.1), сила давле­ния на нижние слои жидкости будет боль­ше, чем на верхние, поэтому на тело, по­груженное в жидкость, действует выталки­вающая сила, определяемая законом Архимеда :на тело, погруженное в жид­кость (газ), действует со стороны этой жидкости направленная вверх выталкива­ющая сила, равная весу вытесненной те­лом жидкости (газа):

F A = ρgV ,

где ρ - плотность жидкости, V - объем погруженного в жидкость тела.

Уравнение неразрывности

Движение жидкостей называется течени­ем , а совокупность частиц движущейся жидкости - потоком. Графически движе­ние жидкостей изображается с помощью линий тока , которые проводятся так, что касательные к ним совпадают по направ­лению с вектором скоро сти жидкости в со­ответствующих точках пространства (рис.6.1). Линии тока проводятся так, чтобы густота их, характеризуемая отно­шением числа линий к площади перпендикулярной им площадки, через которую они проходят, была больше там, где больше скорость течения жидкости, и меньше там, где жидкость течет медленнее. Таким об­разом, по картине линий тока можно су­дить о направлении и модуле скорости в разных точках пространства, т. е. можно определить состояние движения жидкости. Линии тока в жидкости можно «проя­вить», например, подмешав в нее какие-либо заметные взвешенные частицы.

Часть жидкости, ограниченную линия ми тока, называют трубкой тока. Течение жидкости называется установившимся (или стационарным ), если форма и распо­ложение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются. Рассмотрим какую-либо трубку тока. Выберем два ее сечения S 1 и S 2 , перпенди­кулярные направлению скорости (рис.6.2).

За время Δt через сечение S проходит объем жидкости Δt ; следовательно, за 1с через S 1 пройдет объем жидкости S 1 υ 1 , где υ 1 - S 1 . Через сечение S 2 за 1 с пройдет объем жидкости S 2 υ 2 , где υ 2 - скорость течения жидкости в месте сечения S 2 . Здесь предполагается, что ско­рость жидкости в сечении постоянна. Ес­ли жидкость несжимаема (ρ = const), то через сечение S 2 пройдет такой же объем жидкости, как и через сечение S 1 , т. е.

S 1 υ 1 = S 2 υ 2 = const . (6.2)

Следовательно, произведение скоро­сти течения несжимаемой жидкости на поперечное сечение трубки тока есть ве­личина постоянная для данной трубки то­ка. Соотношение (6.2) называется урав­нением неразрывности для несжимаемой жидкости.