Όγκος ενός κυρτού τραπεζοειδούς σε απευθείας σύνδεση. Το εμβαδόν ενός καμπυλόγραμμου τραπεζοειδούς είναι αριθμητικά ίσο με ένα ορισμένο ολοκλήρωμα

Παράδειγμα 1 . Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από τις ευθείες: x + 2y – 4 = 0, y = 0, x = -3 και x = 2


Ας κατασκευάσουμε ένα σχήμα (βλέπε σχήμα) Χτίζουμε μια ευθεία x + 2y – 4 = 0 χρησιμοποιώντας δύο σημεία A(4;0) και B(0;2). Εκφράζοντας το y έως το x, παίρνουμε y = -0,5x + 2. Χρησιμοποιώντας τον τύπο (1), όπου f(x) = -0,5x + 2, a = -3, b = 2, βρίσκουμε

S = = [-0,25=11,25 τετρ. μονάδες

Παράδειγμα 2. Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από τις ευθείες: x – 2y + 4 = 0, x + y – 5 = 0 και y = 0.

Διάλυμα. Ας κατασκευάσουμε το σχήμα.

Ας κατασκευάσουμε μια ευθεία x – 2y + 4 = 0: y = 0, x = - 4, A(-4; 0); x = 0, y = 2, Β(0; 2).

Ας κατασκευάσουμε μια ευθεία x + y – 5 = 0: y = 0, x = 5, C(5; 0), x = 0, y = 5, D(0; 5).

Ας βρούμε το σημείο τομής των ευθειών λύνοντας το σύστημα των εξισώσεων:

x = 2, y = 3; Μ(2; 3).

Για να υπολογίσουμε το απαιτούμενο εμβαδόν, διαιρούμε το τρίγωνο AMC σε δύο τρίγωνα AMN και NMC, καθώς όταν το x αλλάζει από Α σε Ν, η περιοχή περιορίζεται από μια ευθεία γραμμή και όταν το x αλλάζει από Ν σε Γ - από μια ευθεία γραμμή.


Για τρίγωνο AMN έχουμε: ; y = 0,5x + 2, δηλ. f(x) = 0,5x + 2, a = - 4, b = 2.

Για τρίγωνο NMC έχουμε: y = - x + 5, δηλαδή f(x) = - x + 5, a = 2, b = 5.

Υπολογίζοντας το εμβαδόν κάθε τριγώνου και προσθέτοντας τα αποτελέσματα, βρίσκουμε:

πλ. μονάδες

πλ. μονάδες

9 + 4, 5 = 13,5 τετρ. μονάδες Έλεγχος: = 0,5 AC = 0,5 τετρ. μονάδες

Παράδειγμα 3. Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές: y = x 2 , y = 0, x = 2, x = 3.

ΣΕ σε αυτή την περίπτωσηπρέπει να υπολογίσετε το εμβαδόν ενός καμπύλου τραπεζοειδούς που οριοθετείται από την παραβολή y = x 2 , ευθείες x = 2 και x = 3 και ο άξονας Ox (βλ. σχήμα) Χρησιμοποιώντας τον τύπο (1) βρίσκουμε το εμβαδόν του καμπυλόγραμμου τραπεζοειδούς


= = 6 τετρ. μονάδες

Παράδειγμα 4. Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από τις γραμμές: y = - x 2 + 4 και y = 0

Ας κατασκευάσουμε το σχήμα. Η απαιτούμενη περιοχή περικλείεται μεταξύ της παραβολής y = - x 2 + 4 και ο άξονας Ox.


Ας βρούμε τα σημεία τομής της παραβολής με τον άξονα Ox. Υποθέτοντας y = 0, βρίσκουμε x = Εφόσον αυτό το σχήμα είναι συμμετρικό ως προς τον άξονα Oy, υπολογίζουμε το εμβαδόν του σχήματος που βρίσκεται στα δεξιά του άξονα Oy και διπλασιάζουμε το αποτέλεσμα που προκύπτει: = +4x]sq. μονάδες 2 = 2 τετρ. μονάδες

Παράδειγμα 5. Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές: y 2 = x, yx = 1, x = 4

Εδώ πρέπει να υπολογίσετε το εμβαδόν ενός καμπυλόγραμμου τραπεζοειδούς που οριοθετείται από τον άνω κλάδο της παραβολής 2 = x, άξονας Ox και ευθείες x = 1 и x = 4 (βλ. σχήμα)


Σύμφωνα με τον τύπο (1), όπου f(x) = a = 1 και b = 4, έχουμε = (= τετραγωνικές μονάδες.

Παράδειγμα 6 . Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από τις ευθείες: y = sinx, y = 0, x = 0, x= .

Η απαιτούμενη περιοχή περιορίζεται από το μισό κύμα του ημιτονοειδούς και του άξονα Ox (βλ. σχήμα).


Έχουμε - cosx = - cos = 1 + 1 = 2 τετρ. μονάδες

Παράδειγμα 7. Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από τις γραμμές: y = - 6x, y = 0 και x = 4.

Το σχήμα βρίσκεται κάτω από τον άξονα Ox (βλ. εικόνα).

Επομένως, βρίσκουμε το εμβαδόν του χρησιμοποιώντας τον τύπο (3)


= =

Παράδειγμα 8. Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από τις ευθείες: y = και x = 2. Κατασκευάστε την καμπύλη y = από τα σημεία (βλ. σχήμα). Έτσι, βρίσκουμε το εμβαδόν του σχήματος χρησιμοποιώντας τον τύπο (4)

Παράδειγμα 9 .

Χ 2 + y 2 = r 2 .

Εδώ πρέπει να υπολογίσετε την περιοχή που περικλείεται από τον κύκλο x 2 + y 2 = r 2 , δηλαδή το εμβαδόν ενός κύκλου ακτίνας r με το κέντρο στην αρχή. Ας βρούμε το τέταρτο μέρος αυτής της περιοχής παίρνοντας τα όρια ολοκλήρωσης από το 0

προτού; έχουμε: 1 = = [

Οθεν, 1 =

Παράδειγμα 10. Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από ευθείες: y= x 2 και y = 2x

Αυτός ο αριθμός περιορίζεται από την παραβολή y = x 2 και η ευθεία y = 2x (βλ. σχήμα) Για να προσδιορίσουμε τα σημεία τομής των δεδομένων ευθειών, λύνουμε το σύστημα των εξισώσεων: x 2 – 2x = 0 x = 0 και x = 2


Χρησιμοποιώντας τον τύπο (5) για να βρούμε την περιοχή, παίρνουμε

= (βάση κυρτού τραπεζοειδούς) σε n ίσα μέρη. Αυτή η κατάτμηση πραγματοποιείται χρησιμοποιώντας σημεία x 1, x 2, ... x k, ... x n-1. Ας τραβήξουμε ευθείες γραμμές μέσα από αυτά τα σημεία παράλληλες στον άξονα y. Τότε το δεδομένο καμπυλόγραμμο τραπέζιο θα χωριστεί σε n μέρη, σε n στενές στήλες. Το εμβαδόν ολόκληρου του τραπεζοειδούς είναι ίσο με το άθροισμα των περιοχών των στηλών.

Ας εξετάσουμε την k-η στήλη ξεχωριστά, δηλ. ένα καμπύλο τραπεζοειδές του οποίου η βάση είναι ένα τμήμα. Ας το αντικαταστήσουμε με ένα ορθογώνιο με την ίδια βάση και ύψος ίσο με f(x k) (βλ. σχήμα). Το εμβαδόν του ορθογωνίου είναι ίσο με \(f(x_k) \cdot \Delta x_k \), όπου \(\Delta x_k \) είναι το μήκος του τμήματος. Είναι φυσικό να θεωρηθεί το προϊόν που προκύπτει ως μια κατά προσέγγιση τιμή του εμβαδού της kth στήλης.

Αν κάνουμε τώρα το ίδιο με όλες τις άλλες στήλες, θα καταλήξουμε στο εξής αποτέλεσμα: το εμβαδόν S ενός δεδομένου καμπυλόγραμμου τραπεζοειδούς είναι περίπου ίσο με το εμβαδόν S n ενός κλιμακωτού σχήματος που αποτελείται από n ορθογώνια (βλ. σχήμα):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
Εδώ, για λόγους ομοιομορφίας σημειογραφίας, υποθέτουμε ότι a = x 0, b = x n; \(\Delta x_0 \) - μήκος του τμήματος, \(\Delta x_1 \) - μήκος του τμήματος, κ.λπ.; σε αυτήν την περίπτωση, όπως συμφωνήσαμε παραπάνω, \(\Δέλτα x_0 = \κουκκίδες = \Δέλτα x_(n-1) \)

Έτσι, \(S \περίπου S_n \), και αυτή η κατά προσέγγιση ισότητα είναι πιο ακριβής, όσο μεγαλύτερο είναι το n.
Εξ ορισμού, πιστεύεται ότι η απαιτούμενη περιοχή ενός καμπυλόγραμμου τραπεζοειδούς είναι ίση με το όριο της ακολουθίας (S n):
$$ S = \lim_(n \έως \infty) S_n $$

Πρόβλημα 2(σχετικά με τη μετακίνηση ενός σημείου)
Ένα υλικό σημείο κινείται σε ευθεία γραμμή. Η εξάρτηση της ταχύτητας από το χρόνο εκφράζεται με τον τύπο v = v(t). Να βρείτε την κίνηση ενός σημείου σε μια χρονική περίοδο [a; σι].
Διάλυμα.Αν η κίνηση ήταν ομοιόμορφη, τότε το πρόβλημα θα λυνόταν πολύ απλά: s = vt, δηλ. s = v(b-a). Για ανομοιόμορφη κίνηση, πρέπει να χρησιμοποιήσετε τις ίδιες ιδέες στις οποίες βασίστηκε η λύση στο προηγούμενο πρόβλημα.
1) Διαιρέστε το χρονικό διάστημα [a; β] σε n ίσα μέρη.
2) Θεωρήστε μια χρονική περίοδο και υποθέστε ότι κατά τη διάρκεια αυτής της χρονικής περιόδου η ταχύτητα ήταν σταθερή, ίδια με τη χρονική στιγμή t k. Υποθέτουμε λοιπόν ότι v = v(t k).
3) Ας βρούμε την κατά προσέγγιση τιμή της κίνησης του σημείου σε μια χρονική περίοδο, θα υποδηλώσουμε αυτή την κατά προσέγγιση τιμή ως s k
\(s_k = v(t_k) \Δέλτα t_k \)
4) Βρείτε την κατά προσέγγιση τιμή της μετατόπισης s:
\(s \περίπου S_n \) όπου
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Δέλτα t_(n-1) \)
5) Η απαιτούμενη μετατόπιση είναι ίση με το όριο της ακολουθίας (S n):
$$ s = \lim_(n \έως \infty) S_n $$

Ας συνοψίσουμε. Οι λύσεις σε διάφορα προβλήματα περιορίστηκαν στο ίδιο μαθηματικό μοντέλο. Πολλά προβλήματα από διάφορους τομείς της επιστήμης και της τεχνολογίας οδηγούν στο ίδιο μοντέλο στη διαδικασία επίλυσης. Αυτό σημαίνει ότι αυτό το μαθηματικό μοντέλο πρέπει να μελετηθεί ειδικά.

Η έννοια του ορισμένου ολοκληρώματος

Ας δώσουμε μια μαθηματική περιγραφή του μοντέλου που χτίστηκε στα τρία εξεταζόμενα προβλήματα για τη συνάρτηση y = f(x), συνεχής (αλλά όχι απαραίτητα μη αρνητικός, όπως υποτέθηκε στα εξεταζόμενα προβλήματα) στο διάστημα [a; σι]:
1) χωρίστε το τμήμα [a; β] σε n ίσα μέρη.
2) σχηματίστε το άθροισμα $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) υπολογίστε $$ \lim_(n \ έως \infty) S_n $$

Κατά τη διάρκεια της μαθηματικής ανάλυσης αποδείχθηκε ότι αυτό το όριο υπάρχει στην περίπτωση μιας συνεχούς (ή τμηματικά συνεχούς) συνάρτησης. Τον φωνάζουν ορισμένο ολοκλήρωμα της συνάρτησης y = f(x) πάνω από το τμήμα [a; σι]και συμβολίζεται ως εξής:
\(\int\limits_a^b f(x) dx \)
Οι αριθμοί a και b ονομάζονται όρια ολοκλήρωσης (κάτω και άνω, αντίστοιχα).

Ας επιστρέψουμε στις εργασίες που συζητήθηκαν παραπάνω. Ο ορισμός της περιοχής που δίνεται στο Πρόβλημα 1 μπορεί τώρα να ξαναγραφτεί ως εξής:
\(S = \int\limits_a^b f(x) dx \)
εδώ S είναι η περιοχή του καμπυλόγραμμου τραπεζοειδούς που φαίνεται στο παραπάνω σχήμα. Αυτό είναι γεωμετρική έννοια ορισμένου ολοκληρώματος.

Ο ορισμός της μετατόπισης s ενός σημείου που κινείται σε ευθεία γραμμή με ταχύτητα v = v(t) κατά τη διάρκεια της χρονικής περιόδου από t = a έως t = b, που δίνεται στο Πρόβλημα 2, μπορεί να ξαναγραφτεί ως εξής:

Τύπος Newton-Leibniz

Αρχικά, ας απαντήσουμε στο ερώτημα: ποια είναι η σχέση μεταξύ του οριστικού ολοκληρώματος και του αντιπαράγωγου;

Η απάντηση βρίσκεται στο Πρόβλημα 2. Αφενός, η μετατόπιση s ενός σημείου που κινείται σε ευθεία γραμμή με ταχύτητα v = v(t) στη χρονική περίοδο από t = a έως t = b υπολογίζεται με η φόρμουλα
\(S = \int\limits_a^b v(t) dt \)

Από την άλλη πλευρά, η συντεταγμένη ενός κινούμενου σημείου είναι μια αντιπαράγωγος για την ταχύτητα - ας τη συμβολίσουμε s(t). Αυτό σημαίνει ότι η μετατόπιση s εκφράζεται με τον τύπο s = s(b) - s(a). Ως αποτέλεσμα παίρνουμε:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
όπου s(t) είναι το αντιπαράγωγο του v(t).

Το παρακάτω θεώρημα αποδείχθηκε κατά τη διάρκεια της μαθηματικής ανάλυσης.
Θεώρημα. Αν η συνάρτηση y = f(x) είναι συνεχής στο διάστημα [a; b], τότε ο τύπος είναι έγκυρος
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
όπου F(x) είναι το αντιπαράγωγο της f(x).

Ο δεδομένος τύπος συνήθως ονομάζεται Τύπος Newton-Leibnizπρος τιμήν του Άγγλου φυσικού Ισαάκ Νεύτωνα (1643-1727) και του Γερμανού φιλοσόφου Γκότφριντ Λάιμπνιτς (1646-1716), που το έλαβαν ανεξάρτητα ο ένας από τον άλλον και σχεδόν ταυτόχρονα.

Στην πράξη, αντί να γράφουν F(b) - F(a), χρησιμοποιούν τον συμβολισμό \(\left. F(x)\right|_a^b \) (μερικές φορές ονομάζεται διπλή αντικατάσταση) και, κατά συνέπεια, ξαναγράψτε τον τύπο Newton-Leibniz με αυτή τη μορφή:
\(S = \int\limits_a^b f(x) dx = \αριστερά. F(x)\right|_a^b \)

Κατά τον υπολογισμό ενός ορισμένου ολοκληρώματος, βρείτε πρώτα το αντιπαράγωγο και μετά πραγματοποιήστε διπλή αντικατάσταση.

Με βάση τον τύπο Newton-Leibniz, μπορούμε να λάβουμε δύο ιδιότητες του ορισμένου ολοκληρώματος.

Ιδιοκτησία 1.Το ολοκλήρωμα του αθροίσματος των συναρτήσεων είναι ίσο με το άθροισμα των ολοκληρωμάτων:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

Ιδιοκτησία 2.Ο σταθερός παράγοντας μπορεί να αφαιρεθεί από το ολοκλήρωμα:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Υπολογισμός των εμβαδών των επίπεδων σχημάτων με χρήση ορισμένου ολοκληρώματος

Χρησιμοποιώντας το ολοκλήρωμα, μπορείτε να υπολογίσετε τις περιοχές όχι μόνο των καμπυλωτών τραπεζοειδών, αλλά και των επίπεδων σχημάτων ενός πιο σύνθετου τύπου, για παράδειγμα, αυτού που φαίνεται στο σχήμα. Το σχήμα P περιορίζεται από ευθείες x = a, x = b και γραφήματα συνεχών συναρτήσεων y = f(x), y = g(x), και στο τμήμα [a; b] ισχύει η ανισότητα \(g(x) \leq f(x) \). Για να υπολογίσουμε το εμβαδόν S ενός τέτοιου σχήματος, θα προχωρήσουμε ως εξής:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

Άρα, το εμβαδόν S ενός σχήματος που οριοθετείται από ευθείες x = a, x = b και γραφικές παραστάσεις των συναρτήσεων y = f(x), y = g(x), συνεχές στο τμήμα και τέτοιο ώστε για οποιοδήποτε x από το τμήμα [ένα; β] η ανισότητα \(g(x) \leq f(x) \) ικανοποιείται, υπολογισμένη με τον τύπο
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Πίνακας αόριστων ολοκληρωμάτων (αντιπαράγωγα) ορισμένων συναρτήσεων

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n+1))(n+1 ) +C \;\; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch ) x +C $$

Ας προχωρήσουμε στην εξέταση των εφαρμογών του ολοκληρωτικού λογισμού. Σε αυτό το μάθημα θα αναλύσουμε την τυπική και πιο συνηθισμένη εργασία υπολογισμός του εμβαδού ενός επιπέδου σχήματος χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα. Τέλος, ας το βρουν όλοι όσοι αναζητούν νόημα στα ανώτερα μαθηματικά. Ποτέ δεν ξέρεις. Στην πραγματική ζωή, θα πρέπει να προσεγγίσετε ένα οικόπεδο dacha χρησιμοποιώντας στοιχειώδεις συναρτήσεις και να βρείτε την περιοχή του χρησιμοποιώντας ένα συγκεκριμένο ολοκλήρωμα.

Για να κατακτήσετε με επιτυχία το υλικό, πρέπει:

1) Κατανοήστε το αόριστο ολοκλήρωμα τουλάχιστον σε ενδιάμεσο επίπεδο. Έτσι, τα ανδρείκελα θα πρέπει πρώτα να διαβάσουν το μάθημα Δεν.

2) Να είναι σε θέση να εφαρμόσει τον τύπο Newton-Leibniz και να υπολογίσει το οριστικό ολοκλήρωμα. Μπορείτε να δημιουργήσετε ζεστές φιλικές σχέσεις με ορισμένα ολοκληρώματα στη σελίδα Ορισμένο ολοκλήρωμα. Παραδείγματα λύσεων. Η εργασία "υπολογισμός του εμβαδού χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα" περιλαμβάνει πάντα την κατασκευή ενός σχεδίου, επομένως οι γνώσεις και οι δεξιότητές σας στο σχέδιο θα είναι επίσης ένα σχετικό θέμα. Τουλάχιστον, πρέπει να είστε σε θέση να κατασκευάσετε μια ευθεία γραμμή, μια παραβολή και μια υπερβολή.

Ας ξεκινήσουμε με ένα καμπύλο τραπεζοειδές. Ένα καμπύλο τραπεζοειδές είναι ένα επίπεδο σχήμα που οριοθετείται από τη γραφική παράσταση κάποιας συνάρτησης y = φά(x), άξονας ΒΟΔΙκαι γραμμές x = ένα; x = σι.

Το εμβαδόν ενός καμπυλόγραμμου τραπεζοειδούς είναι αριθμητικά ίσο με ένα ορισμένο ολοκλήρωμα

Κάθε οριστικό ολοκλήρωμα (που υπάρχει) έχει πολύ καλή γεωμετρική σημασία. Στην τάξη Ορισμένο ολοκλήρωμα. Παραδείγματα λύσεωνείπαμε ότι ορισμένο ολοκλήρωμα είναι ένας αριθμός. Και τώρα ήρθε η ώρα να αναφέρουμε ένα άλλο χρήσιμο γεγονός. Από την άποψη της γεωμετρίας, το οριστικό ολοκλήρωμα είναι ΠΕΡΙΟΧΗ. Ήτοι, το οριστικό ολοκλήρωμα (αν υπάρχει) αντιστοιχεί γεωμετρικά στο εμβαδόν ενός συγκεκριμένου σχήματος. Θεωρήστε το οριστικό ολοκλήρωμα

Integrand

ορίζει μια καμπύλη στο επίπεδο (μπορεί να σχεδιαστεί εάν είναι επιθυμητό) και το ίδιο το καθορισμένο ολοκλήρωμα είναι αριθμητικά ίσο με την περιοχή του αντίστοιχου καμπυλόγραμμου τραπεζοειδούς.



Παράδειγμα 1

, , , .

Αυτή είναι μια τυπική δήλωση ανάθεσης. Το πιο σημαντικό σημείο στην απόφαση είναι η κατασκευή του σχεδίου. Επιπλέον, το σχέδιο πρέπει να κατασκευαστεί ΔΙΚΑΙΩΜΑ.

Κατά την κατασκευή ενός σχεδίου, προτείνω την ακόλουθη σειρά: αρχικάείναι προτιμότερο να κατασκευάζονται όλες οι ευθείες (αν υπάρχουν) και μόνο Τότε– παραβολές, υπερβολές, γραφικές παραστάσεις άλλων συναρτήσεων. Η τεχνική κατασκευής σημείο προς σημείο βρίσκεται στο υλικό αναφοράς Γραφήματα και ιδιότητες στοιχειωδών συναρτήσεων. Εκεί μπορείτε επίσης να βρείτε πολύ χρήσιμο υλικό για το μάθημά μας - πώς να φτιάξετε γρήγορα μια παραβολή.

Σε αυτό το πρόβλημα, η λύση μπορεί να μοιάζει με αυτό.

Ας κάνουμε το σχέδιο (σημειώστε ότι η εξίσωση y= 0 καθορίζει τον άξονα ΒΟΔΙ):

Δεν θα σκιάσουμε το καμπύλο τραπεζοειδές εδώ είναι προφανές για ποια περιοχή μιλάμε. Η λύση συνεχίζεται ως εξής:

Στο τμήμα [-2; 1] γράφημα συνάρτησης y = x 2 + 2 βρίσκονται πάνω από τον άξοναΒΟΔΙ, Γι' αυτό:

Απάντηση: .

Ποιος έχει δυσκολίες με τον υπολογισμό του οριστικού ολοκληρώματος και την εφαρμογή του τύπου Newton-Leibniz

,

ανατρέξτε στη διάλεξη Ορισμένο ολοκλήρωμα. Παραδείγματα λύσεων. Αφού ολοκληρωθεί η εργασία, είναι πάντα χρήσιμο να κοιτάξετε το σχέδιο και να καταλάβετε εάν η απάντηση είναι πραγματική. Σε αυτή την περίπτωση, μετράμε τον αριθμό των κελιών στο σχέδιο "με το μάτι" - καλά, θα είναι περίπου 9, φαίνεται να είναι αλήθεια. Είναι απολύτως σαφές ότι αν λάβαμε, ας πούμε, την απάντηση: 20 τετραγωνικές μονάδες, τότε είναι προφανές ότι κάπου έγινε ένα λάθος - 20 κελιά προφανώς δεν χωρούν στο εν λόγω σχήμα, το πολύ μια ντουζίνα. Εάν η απάντηση είναι αρνητική, τότε η εργασία λύθηκε επίσης εσφαλμένα.

Παράδειγμα 2

Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές xy = 4, x = 2, x= 4 και άξονας ΒΟΔΙ.

Αυτό είναι ένα παράδειγμα για να το λύσετε μόνοι σας. Πλήρης λύση και απάντηση στο τέλος του μαθήματος.

Τι να κάνετε εάν βρίσκεται το καμπύλο τραπεζοειδές κάτω από τον άξοναΒΟΔΙ?

Παράδειγμα 3

Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές y = πρώην, x= 1 και άξονες συντεταγμένων.

Λύση: Ας κάνουμε ένα σχέδιο:

Αν ένα κυρτό τραπεζοειδές βρίσκεται πλήρως κάτω από τον άξονα ΒΟΔΙ , τότε η περιοχή του μπορεί να βρεθεί χρησιμοποιώντας τον τύπο:

Σε αυτή την περίπτωση:

.

Προσοχή! Οι δύο τύποι εργασιών δεν πρέπει να συγχέονται:

1) Αν σας ζητηθεί να λύσετε απλώς ένα οριστικό ολοκλήρωμα χωρίς γεωμετρική σημασία, τότε μπορεί να είναι αρνητικό.

2) Αν σας ζητηθεί να βρείτε το εμβαδόν ενός σχήματος χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα, τότε το εμβαδόν είναι πάντα θετικό! Αυτός είναι ο λόγος για τον οποίο το μείον εμφανίζεται στον τύπο που μόλις συζητήθηκε.

Στην πράξη, τις περισσότερες φορές το σχήμα βρίσκεται τόσο στο άνω όσο και στο κάτω ημιεπίπεδο, και ως εκ τούτου, από τα απλούστερα σχολικά προβλήματα προχωράμε σε πιο ουσιαστικά παραδείγματα.

Παράδειγμα 4

Βρείτε το εμβαδόν ενός επίπεδου σχήματος που οριοθετείται από γραμμές y = 2xx 2 , y = -x.

Λύση: Πρώτα πρέπει να κάνετε ένα σχέδιο. Όταν κατασκευάζουμε ένα σχέδιο σε προβλήματα περιοχής, μας ενδιαφέρουν περισσότερο τα σημεία τομής των γραμμών. Ας βρούμε τα σημεία τομής της παραβολής y = 2xx 2 και ευθεία y = -x. Αυτό μπορεί να γίνει με δύο τρόπους. Η πρώτη μέθοδος είναι αναλυτική. Λύνουμε την εξίσωση:

Αυτό σημαίνει ότι το κατώτερο όριο ολοκλήρωσης ένα= 0, ανώτερο όριο ολοκλήρωσης σι= 3. Είναι συχνά πιο επικερδές και πιο γρήγορο να κατασκευάζονται γραμμές σημείο προς σημείο και τα όρια της ολοκλήρωσης γίνονται ξεκάθαρα «από μόνα τους». Ωστόσο, η αναλυτική μέθοδος εύρεσης ορίων πρέπει να χρησιμοποιείται μερικές φορές εάν, για παράδειγμα, το γράφημα είναι αρκετά μεγάλο ή η λεπτομερής κατασκευή δεν αποκάλυψε τα όρια της ολοκλήρωσης (μπορεί να είναι κλασματικά ή παράλογα). Ας επιστρέψουμε στο καθήκον μας: είναι πιο λογικό να κατασκευάσουμε πρώτα μια ευθεία γραμμή και μόνο μετά μια παραβολή. Ας κάνουμε το σχέδιο:

Ας επαναλάβουμε ότι κατά την κατασκευή κατά σημείο, τα όρια ολοκλήρωσης καθορίζονται τις περισσότερες φορές «αυτόματα».

Και τώρα ο τύπος εργασίας:

Εάν στο τμήμα [ ένα; σι] κάποια συνεχής λειτουργία φά(x) μεγαλύτερο ή ίσο μεκάποια συνεχής λειτουργία σολ(x), τότε η περιοχή του αντίστοιχου σχήματος μπορεί να βρεθεί χρησιμοποιώντας τον τύπο:

Εδώ δεν χρειάζεται πλέον να σκεφτείτε πού βρίσκεται το σχήμα - πάνω από τον άξονα ή κάτω από τον άξονα, αλλά σημασία έχει ποιο γράφημα είναι ΥΨΗΛΟΤΕΡΟ(σε σχέση με άλλο γράφημα), και ποιο είναι ΠΑΡΑΚΑΤΩ.

Στο υπό εξέταση παράδειγμα, είναι προφανές ότι στο τμήμα η παραβολή βρίσκεται πάνω από την ευθεία γραμμή, και επομένως από το 2 xxΤο 2 πρέπει να αφαιρεθεί - x.

Η ολοκληρωμένη λύση μπορεί να μοιάζει με αυτό:

Το επιθυμητό σχήμα περιορίζεται από μια παραβολή y = 2xx 2 πάνω και ευθεία y = -xπαρακάτω.

Στο τμήμα 2 xx 2 ≥ -x. Σύμφωνα με τον αντίστοιχο τύπο:

Απάντηση: .

Στην πραγματικότητα, ο σχολικός τύπος για το εμβαδόν ενός καμπυλόγραμμου τραπεζοειδούς στο κάτω ημιεπίπεδο (βλ. παράδειγμα Νο. 3) είναι μια ειδική περίπτωση του τύπου

.

Γιατί ο άξονας ΒΟΔΙδίνεται από την εξίσωση y= 0, και το γράφημα της συνάρτησης σολ(x) που βρίσκεται κάτω από τον άξονα ΒΟΔΙ, Αυτό

.

Και τώρα μερικά παραδείγματα για τη δική σας λύση

Παράδειγμα 5

Παράδειγμα 6

Βρείτε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές

Κατά την επίλυση προβλημάτων που αφορούν τον υπολογισμό της περιοχής χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα, μερικές φορές συμβαίνει ένα αστείο περιστατικό. Το σχέδιο έγινε σωστά, οι υπολογισμοί ήταν σωστοί, αλλά από απροσεξία... Βρέθηκε η περιοχή της λάθος φιγούρας.

Παράδειγμα 7

Πρώτα ας κάνουμε ένα σχέδιο:

Η φιγούρα της οποίας η περιοχή πρέπει να βρούμε είναι σκιασμένη με μπλε(κοιτάξτε προσεκτικά την κατάσταση - πώς είναι περιορισμένος ο αριθμός!). Αλλά στην πράξη, λόγω απροσεξίας, οι άνθρωποι συχνά αποφασίζουν ότι πρέπει να βρουν την περιοχή της φιγούρας που είναι σκιασμένη με πράσινο!

Αυτό το παράδειγμα είναι επίσης χρήσιμο επειδή υπολογίζει το εμβαδόν ενός σχήματος χρησιμοποιώντας δύο καθορισμένα ολοκληρώματα. Πραγματικά:

1) Στο τμήμα [-1; 1] πάνω από τον άξονα ΒΟΔΙτο γράφημα βρίσκεται ευθεία y = x+1;

2) Σε τμήμα πάνω από τον άξονα ΒΟΔΙβρίσκεται η γραφική παράσταση μιας υπερβολής y = (2/x).

Είναι προφανές ότι οι περιοχές μπορούν (και πρέπει) να προστεθούν, επομένως:

Απάντηση:

Παράδειγμα 8

Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές

Ας παρουσιάσουμε τις εξισώσεις σε «σχολική» μορφή

και κάντε ένα σχέδιο σημείο προς σημείο:

Είναι σαφές από το σχέδιο ότι το ανώτατο όριο μας είναι «καλό»: σι = 1.

Ποιο είναι όμως το κατώτερο όριο;! Είναι σαφές ότι αυτό δεν είναι ακέραιος, αλλά τι είναι;

Μπορεί να είναι, ένα=(-1/3); Αλλά πού είναι η εγγύηση ότι το σχέδιο γίνεται με τέλεια ακρίβεια, μπορεί κάλλιστα να αποδειχθεί ότι ένα=(-1/4). Τι γίνεται αν κατασκευάσαμε λάθος το γράφημα;

Σε τέτοιες περιπτώσεις, πρέπει να αφιερώσετε επιπλέον χρόνο και να ξεκαθαρίσετε αναλυτικά τα όρια της ολοκλήρωσης.

Ας βρούμε τα σημεία τομής των γραφημάτων

Για να γίνει αυτό, λύνουμε την εξίσωση:

.

Οθεν, ένα=(-1/3).

Η περαιτέρω λύση είναι ασήμαντη. Το κύριο πράγμα είναι να μην μπερδεύεστε σε αντικαταστάσεις και ζώδια. Οι υπολογισμοί εδώ δεν είναι οι απλούστεροι. Στο τμήμα

, ,

σύμφωνα με τον κατάλληλο τύπο:

Απάντηση:

Για να ολοκληρώσουμε το μάθημα, ας δούμε δύο πιο δύσκολες εργασίες.

Παράδειγμα 9

Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές

Λύση: Ας απεικονίσουμε αυτό το σχήμα στο σχέδιο.

Για να κατασκευάσετε ένα σχέδιο σημείο προς σημείο, πρέπει να γνωρίζετε την εμφάνιση ενός ημιτονοειδούς. Σε γενικές γραμμές, είναι χρήσιμο να γνωρίζουμε τα γραφήματα όλων των στοιχειωδών συναρτήσεων, καθώς και ορισμένες τιμές ημιτόνου. Μπορούν να βρεθούν στον πίνακα τιμών τριγωνομετρικές συναρτήσεις. Σε ορισμένες περιπτώσεις (για παράδειγμα, σε αυτήν την περίπτωση), είναι δυνατή η κατασκευή ενός σχηματικού σχεδίου, στο οποίο τα γραφήματα και τα όρια ολοκλήρωσης θα πρέπει να εμφανίζονται βασικά σωστά.

Δεν υπάρχουν προβλήματα με τα όρια ολοκλήρωσης εδώ, αυτά προκύπτουν απευθείας από την προϋπόθεση:

– Το “x” αλλάζει από μηδέν σε “pi”. Ας πάρουμε μια περαιτέρω απόφαση:

Σε ένα τμήμα, η γραφική παράσταση μιας συνάρτησης y= αμαρτία 3 xπου βρίσκεται πάνω από τον άξονα ΒΟΔΙ, Γι' αυτό:

(1) Μπορείτε να δείτε πώς τα ημίτονο και τα συνημίτονα ενσωματώνονται σε περιττές δυνάμεις στο μάθημα Ολοκληρώματα τριγωνομετρικών συναρτήσεων. Τσιμπάμε τον ένα κόλπο.

(2) Χρησιμοποιούμε την κύρια τριγωνομετρική ταυτότητα στη φόρμα

(3) Ας αλλάξουμε τη μεταβλητή t=κοσ x, τότε: βρίσκεται πάνω από τον άξονα, επομένως:

.

.

Σημείωμα:Σημειώστε πώς λαμβάνεται το ολοκλήρωμα της εφαπτομένης σε κύβους χρησιμοποιείται εδώ μια απόρροια της βασικής τριγωνομετρικής ταυτότητας

.

Αρχίζουμε να εξετάζουμε την πραγματική διαδικασία υπολογισμού του διπλού ολοκληρώματος και να εξοικειωνόμαστε με τη γεωμετρική του σημασία.

Το διπλό ολοκλήρωμα είναι αριθμητικά ίσο με το εμβαδόν του επίπεδου σχήματος (η περιοχή ολοκλήρωσης). Αυτή είναι η απλούστερη μορφή διπλού ολοκληρώματος, όταν η συνάρτηση δύο μεταβλητών είναι ίση με μία: .

Αρχικά, ας δούμε το πρόβλημα σε γενική μορφή. Τώρα θα εκπλαγείτε πολύ πόσο απλά είναι όλα πραγματικά! Ας υπολογίσουμε το εμβαδόν ενός επίπεδου σχήματος που οριοθετείται από γραμμές. Για βεβαιότητα, υποθέτουμε ότι στο τμήμα . Το εμβαδόν αυτού του σχήματος είναι αριθμητικά ίσο με:

Ας απεικονίσουμε την περιοχή στο σχέδιο:

Ας επιλέξουμε τον πρώτο τρόπο να διασχίσουμε την περιοχή:

Ετσι:

Και αμέσως μια σημαντική τεχνική τεχνική: τα επαναλαμβανόμενα ολοκληρώματα μπορούν να υπολογιστούν χωριστά. Πρώτα το εσωτερικό ολοκλήρωμα, μετά το εξωτερικό ολοκλήρωμα. Συνιστώ ανεπιφύλακτα αυτήν τη μέθοδο σε αρχάριους στο αντικείμενο.

1) Ας υπολογίσουμε το εσωτερικό ολοκλήρωμα και η ολοκλήρωση πραγματοποιείται πάνω από τη μεταβλητή "y":

Το αόριστο ολοκλήρωμα εδώ είναι το απλούστερο και στη συνέχεια χρησιμοποιείται ο συνηθισμένος τύπος Newton-Leibniz, με τη μόνη διαφορά ότι τα όρια της ολοκλήρωσης δεν είναι αριθμοί, αλλά συναρτήσεις. Πρώτα, αντικαταστήσαμε το ανώτερο όριο με το «y» (αντιπαράγωγη συνάρτηση) και μετά το κάτω όριο

2) Το αποτέλεσμα που προκύπτει στην πρώτη παράγραφο πρέπει να αντικατασταθεί στο εξωτερικό ολοκλήρωμα:

Μια πιο συμπαγής αναπαράσταση ολόκληρης της λύσης μοιάζει με αυτό:

Ο τύπος που προκύπτει είναι ακριβώς ο τύπος εργασίας για τον υπολογισμό του εμβαδού ενός επίπεδου σχήματος χρησιμοποιώντας το «συνηθισμένο» οριστικό ολοκλήρωμα! Παρακολουθήστε το μάθημα Υπολογισμός εμβαδού με χρήση ορισμένου ολοκληρώματος, εκεί είναι σε κάθε βήμα!

Ήτοι, πρόβλημα υπολογισμού εμβαδού με χρήση διπλού ολοκληρώματος όχι πολύ διαφορετικόαπό το πρόβλημα εύρεσης της περιοχής με χρήση ορισμένου ολοκληρώματος!Στην πραγματικότητα, είναι το ίδιο πράγμα!

Κατά συνέπεια, δεν πρέπει να προκύψουν δυσκολίες! Δεν θα εξετάσω πολλά παραδείγματα, αφού στην πραγματικότητα, έχετε αντιμετωπίσει επανειλημμένα αυτό το έργο.

Παράδειγμα 9

Διάλυμα:Ας απεικονίσουμε την περιοχή στο σχέδιο:

Ας επιλέξουμε την ακόλουθη σειρά διέλευσης της περιοχής:

Εδώ και παραπέρα δεν θα σταθώ στο πώς θα διασχίσω την περιοχή, αφού στην πρώτη παράγραφο δόθηκαν λεπτομερέστατες εξηγήσεις.

Ετσι:

Όπως έχω ήδη σημειώσει, είναι καλύτερο για τους αρχάριους να υπολογίζουν τα επαναλαμβανόμενα ολοκληρώματα ξεχωριστά και θα παραμείνω στην ίδια μέθοδο:

1) Αρχικά, χρησιμοποιώντας τον τύπο Newton-Leibniz, ασχολούμαστε με το εσωτερικό ολοκλήρωμα:

2) Το αποτέλεσμα που προκύπτει στο πρώτο βήμα αντικαθίσταται στο εξωτερικό ολοκλήρωμα:

Το σημείο 2 είναι στην πραγματικότητα εύρεση του εμβαδού ενός επίπεδου σχήματος χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα.

Απάντηση:

Αυτό είναι ένα τόσο ανόητο και αφελές έργο.

Ένα ενδιαφέρον παράδειγμα για μια ανεξάρτητη λύση:

Παράδειγμα 10

Χρησιμοποιώντας ένα διπλό ολοκλήρωμα, υπολογίστε το εμβαδόν ενός επίπεδου σχήματος που οριοθετείται από τις ευθείες, ,

Ένα κατά προσέγγιση παράδειγμα τελικής λύσης στο τέλος του μαθήματος.

Στα Παραδείγματα 9-10, είναι πολύ πιο κερδοφόρο να χρησιμοποιήσετε την πρώτη μέθοδο διέλευσης της περιοχής, παρεμπιπτόντως, οι περίεργοι αναγνώστες μπορούν να αλλάξουν τη σειρά διέλευσης και να υπολογίσουν τις περιοχές χρησιμοποιώντας τη δεύτερη μέθοδο. Εάν δεν κάνετε λάθος, τότε, φυσικά, θα λάβετε τις ίδιες τιμές περιοχής.

Αλλά σε ορισμένες περιπτώσεις, η δεύτερη μέθοδος διέλευσης της περιοχής είναι πιο αποτελεσματική, και στο τέλος της πορείας του νεαρού σπασίκλα, ας δούμε μερικά ακόμη παραδείγματα για αυτό το θέμα:

Παράδειγμα 11

Χρησιμοποιώντας ένα διπλό ολοκλήρωμα, υπολογίστε το εμβαδόν ενός επίπεδου σχήματος που οριοθετείται από γραμμές,

Διάλυμα:Ανυπομονούμε για δύο παραβολές με μια ιδιορρυθμία που βρίσκονται στα πλάγια. Δεν χρειάζεται να χαμογελάτε παρόμοια πράγματα συμβαίνουν αρκετά συχνά σε πολλαπλά ολοκληρώματα.

Ποιος είναι ο ευκολότερος τρόπος για να κάνετε ένα σχέδιο;

Ας φανταστούμε μια παραβολή με τη μορφή δύο συναρτήσεων:
– ο άνω κλάδος και – ο κάτω κλάδος.

Ομοίως, φανταστείτε μια παραβολή με τη μορφή άνω και κάτω κλαδιά.

Στη συνέχεια, η κατά σημείο σχεδίαση κανόνων γραφημάτων, με αποτέλεσμα ένα τόσο παράξενο σχήμα:

Υπολογίζουμε το εμβαδόν του σχήματος χρησιμοποιώντας το διπλό ολοκλήρωμα σύμφωνα με τον τύπο:

Τι θα συμβεί αν επιλέξουμε την πρώτη μέθοδο διέλευσης της περιοχής; Πρώτον, αυτή η περιοχή θα πρέπει να χωριστεί σε δύο μέρη. Και δεύτερον, θα παρατηρήσουμε αυτή τη θλιβερή εικόνα: . Τα ολοκληρώματα, βέβαια, δεν είναι υπερ-σύνθετου επιπέδου, αλλά... υπάρχει ένα παλιό μαθηματικό ρητό: όσοι είναι κοντά στις ρίζες τους δεν χρειάζονται τεστ.

Επομένως, από την παρανόηση που δίνεται στη συνθήκη, εκφράζουμε τις αντίστροφες συναρτήσεις:

Οι αντίστροφες συναρτήσεις σε αυτό το παράδειγμα έχουν το πλεονέκτημα ότι καθορίζουν ολόκληρη την παραβολή ταυτόχρονα χωρίς φύλλα, βελανίδια, κλαδιά και ρίζες.

Σύμφωνα με τη δεύτερη μέθοδο, η διάβαση της περιοχής θα είναι η εξής:

Ετσι:

Όπως λένε, νιώστε τη διαφορά.

1) Ασχολούμαστε με το εσωτερικό ολοκλήρωμα:

Αντικαθιστούμε το αποτέλεσμα στο εξωτερικό ολοκλήρωμα:

Η ολοκλήρωση πάνω από τη μεταβλητή "y" δεν πρέπει να προκαλεί σύγχυση εάν υπήρχε ένα γράμμα "zy", θα ήταν υπέροχο να ενσωματωθεί πάνω από αυτό. Αν και ποιος διάβασε τη δεύτερη παράγραφο του μαθήματος Πώς να υπολογίσετε τον όγκο ενός σώματος περιστροφής, δεν βιώνει πλέον την παραμικρή αμηχανία με την ενσωμάτωση σύμφωνα με τη μέθοδο «Υ».

Προσέξτε επίσης το πρώτο βήμα: το ολοκλήρωμα είναι άρτιο και το διάστημα ολοκλήρωσης είναι συμμετρικό περίπου μηδέν. Επομένως, το τμήμα μπορεί να μειωθεί στο μισό και το αποτέλεσμα μπορεί να διπλασιαστεί. Αυτή η τεχνική σχολιάζεται αναλυτικά στο μάθημα. Αποτελεσματικές μέθοδοι για τον υπολογισμό του ορισμένου ολοκληρώματος.

Τι να προσθέσω... Ολοι!

Απάντηση:

Για να δοκιμάσετε την τεχνική ολοκλήρωσης, μπορείτε να προσπαθήσετε να υπολογίσετε . Η απάντηση θα πρέπει να είναι ακριβώς η ίδια.

Παράδειγμα 12

Χρησιμοποιώντας ένα διπλό ολοκλήρωμα, υπολογίστε το εμβαδόν ενός επίπεδου σχήματος που οριοθετείται από γραμμές

Αυτό είναι ένα παράδειγμα για να το λύσετε μόνοι σας. Είναι ενδιαφέρον να σημειωθεί ότι αν προσπαθήσετε να χρησιμοποιήσετε την πρώτη μέθοδο διάβασης της περιοχής, η φιγούρα δεν θα χρειάζεται πλέον να χωρίζεται σε δύο, αλλά σε τρία μέρη! Και, κατά συνέπεια, παίρνουμε τρία ζεύγη επαναλαμβανόμενων ολοκληρωμάτων. Συμβαίνει και αυτό.

Το master class έφτασε στο τέλος του και ήρθε η ώρα να προχωρήσουμε στο επίπεδο grandmaster - Πώς να υπολογίσετε το διπλό ολοκλήρωμα; Παραδείγματα λύσεων. Θα προσπαθήσω να μην είμαι τόσο μανιακός στο δεύτερο άρθρο =)

Εύχομαι επιτυχία!

Λύσεις και απαντήσεις:

Παράδειγμα 2:Διάλυμα: Ας απεικονίσουμε την περιοχή στο σχέδιο:

Ας επιλέξουμε την ακόλουθη σειρά διέλευσης της περιοχής:

Ετσι:
Ας προχωρήσουμε στις αντίστροφες συναρτήσεις:


Ετσι:
Απάντηση:

Παράδειγμα 4:Διάλυμα: Ας προχωρήσουμε στις άμεσες συναρτήσεις:


Ας κάνουμε το σχέδιο:

Ας αλλάξουμε τη σειρά διέλευσης της περιοχής:

Απάντηση:

Στην προηγούμενη ενότητα, αφιερωμένη στην ανάλυση της γεωμετρικής σημασίας ενός ορισμένου ολοκληρώματος, λάβαμε έναν αριθμό τύπων για τον υπολογισμό του εμβαδού ενός καμπυλόγραμμου τραπεζοειδούς:

Yandex.RTB R-A-339285-1

S (G) = ∫ a b f (x) d x για μια συνεχή και μη αρνητική συνάρτηση y = f (x) στο διάστημα [ a ; β ],

S (G) = - ∫ a b f (x) d x για μια συνεχή και μη θετική συνάρτηση y = f (x) στο διάστημα [ a ; β ] .

Αυτοί οι τύποι ισχύουν για την επίλυση σχετικά απλών προβλημάτων. Στην πραγματικότητα, συχνά θα πρέπει να δουλέψουμε με πιο σύνθετα στοιχεία. Από αυτή την άποψη, θα αφιερώσουμε αυτήν την ενότητα σε μια ανάλυση αλγορίθμων για τον υπολογισμό του εμβαδού των ψηφίων που περιορίζονται από συναρτήσεις σε ρητή μορφή, δηλ. όπως y = f(x) ή x = g(y).

Θεώρημα

Έστω οι συναρτήσεις y = f 1 (x) και y = f 2 (x) καθορισμένες και συνεχείς στο διάστημα [ a ; b ] , και f 1 (x) ≤ f 2 (x) για οποιαδήποτε τιμή x από [ a ; β ] . Τότε ο τύπος για τον υπολογισμό του εμβαδού του σχήματος G, οριοθετημένος από τις ευθείες x = a, x = b, y = f 1 (x) και y = f 2 (x) θα μοιάζει με S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Ένας παρόμοιος τύπος θα ισχύει για την περιοχή ενός σχήματος που οριοθετείται από τις ευθείες y = c, y = d, x = g 1 (y) και x = g 2 (y): S (G) = ∫ c d ( g 2 (y) - g 1 (y) d y .

Απόδειξη

Ας δούμε τρεις περιπτώσεις για τις οποίες θα ισχύει ο τύπος.

Στην πρώτη περίπτωση, λαμβάνοντας υπόψη την ιδιότητα της προσθετικότητας της περιοχής, το άθροισμα των εμβαδών του αρχικού σχήματος G και του καμπυλόγραμμου τραπεζοειδούς G1 είναι ίσο με το εμβαδόν του σχήματος G2. Αυτό σημαίνει ότι

Επομένως, S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

Μπορούμε να εκτελέσουμε την τελευταία μετάβαση χρησιμοποιώντας την τρίτη ιδιότητα του ορισμένου ολοκληρώματος.

Στη δεύτερη περίπτωση, η ισότητα είναι αληθής: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - f 1 (x)) d x

Η γραφική απεικόνιση θα μοιάζει με:

Αν και οι δύο συναρτήσεις είναι μη θετικές, παίρνουμε: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Η γραφική απεικόνιση θα μοιάζει με:

Ας προχωρήσουμε στην εξέταση της γενικής περίπτωσης όταν y = f 1 (x) και y = f 2 (x) τέμνουν τον άξονα O x.

Σημειώνουμε τα σημεία τομής ως x i, i = 1, 2, . . . , n - 1 . Αυτά τα σημεία χωρίζουν το τμήμα [a; b ] σε n μέρη x i - 1 ; x i, i = 1, 2, . . . , n, όπου α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Οθεν,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Μπορούμε να κάνουμε την τελευταία μετάβαση χρησιμοποιώντας την πέμπτη ιδιότητα του ορισμένου ολοκληρώματος.

Ας δείξουμε τη γενική περίπτωση στο γράφημα.

Ο τύπος S (G) = ∫ a b f 2 (x) - f 1 (x) d x μπορεί να θεωρηθεί αποδεδειγμένος.

Τώρα ας προχωρήσουμε στην ανάλυση παραδειγμάτων υπολογισμού του εμβαδού των ψηφίων που περιορίζονται από τις γραμμές y = f (x) και x = g (y).

Θα ξεκινήσουμε την εξέταση οποιουδήποτε από τα παραδείγματα κατασκευάζοντας ένα γράφημα. Η εικόνα θα μας επιτρέψει να αναπαραστήσουμε πολύπλοκα σχήματα ως ενώσεις απλούστερων σχημάτων. Εάν η κατασκευή γραφημάτων και σχημάτων σε αυτά σας δημιουργεί δυσκολίες, μπορείτε να μελετήσετε την ενότητα για τις βασικές στοιχειώδεις συναρτήσεις, τον γεωμετρικό μετασχηματισμό γραφημάτων συναρτήσεων, καθώς και την κατασκευή γραφημάτων κατά τη μελέτη μιας συνάρτησης.

Παράδειγμα 1

Είναι απαραίτητο να προσδιοριστεί η περιοχή του σχήματος, η οποία περιορίζεται από την παραβολή y = - x 2 + 6 x - 5 και τις ευθείες γραμμές y = - 1 3 x - 1 2, x = 1, x = 4.

Διάλυμα

Ας σχεδιάσουμε τις γραμμές στο γράφημα στο καρτεσιανό σύστημα συντεταγμένων.

Στο τμήμα [ 1 ; 4 ] η γραφική παράσταση της παραβολής y = - x 2 + 6 x - 5 βρίσκεται πάνω από την ευθεία y = - 1 3 x - 1 2. Από αυτή την άποψη, για να λάβουμε την απάντηση χρησιμοποιούμε τον τύπο που λήφθηκε νωρίτερα, καθώς και τη μέθοδο υπολογισμού του ορισμένου ολοκληρώματος χρησιμοποιώντας τον τύπο Newton-Leibniz:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Απάντηση: S(G) = 13

Ας δούμε ένα πιο σύνθετο παράδειγμα.

Παράδειγμα 2

Είναι απαραίτητο να υπολογίσετε την περιοχή του σχήματος, η οποία περιορίζεται από τις γραμμές y = x + 2, y = x, x = 7.

Διάλυμα

Σε αυτή την περίπτωση, έχουμε μόνο μία ευθεία που βρίσκεται παράλληλα στον άξονα x. Αυτό είναι x = 7. Αυτό απαιτεί να βρούμε μόνοι μας το δεύτερο όριο ένταξης.

Ας φτιάξουμε ένα γράφημα και ας σχεδιάσουμε πάνω του τις γραμμές που δίνονται στη δήλωση προβλήματος.

Έχοντας το γράφημα μπροστά στα μάτια μας, μπορούμε εύκολα να προσδιορίσουμε ότι το κατώτερο όριο ολοκλήρωσης θα είναι η τετμημένη του σημείου τομής της γραφικής παράστασης της ευθείας y = x και της ημιπαραβολής y = x + 2. Για να βρούμε την τετμημένη χρησιμοποιούμε τις ισότητες:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

Αποδεικνύεται ότι η τετμημένη του σημείου τομής είναι x = 2.

Εφιστούμε την προσοχή σας στο γεγονός ότι στο γενικό παράδειγμα του σχεδίου, οι ευθείες y = x + 2, y = x τέμνονται στο σημείο (2; 2), επομένως τέτοιοι λεπτομερείς υπολογισμοί μπορεί να φαίνονται περιττοί. Έχουμε δώσει μια τόσο λεπτομερή λύση εδώ μόνο επειδή σε πιο περίπλοκες περιπτώσεις η λύση μπορεί να μην είναι τόσο προφανής. Αυτό σημαίνει ότι είναι πάντα καλύτερο να υπολογίζουμε αναλυτικά τις συντεταγμένες της τομής των γραμμών.

Στο διάστημα [ 2 ; 7] η γραφική παράσταση της συνάρτησης y = x βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης y = x + 2. Ας εφαρμόσουμε τον τύπο για να υπολογίσουμε το εμβαδόν:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Απάντηση: S (G) = 59 6

Παράδειγμα 3

Είναι απαραίτητο να υπολογιστεί η περιοχή του σχήματος, η οποία περιορίζεται από τα γραφήματα των συναρτήσεων y = 1 x και y = - x 2 + 4 x - 2.

Διάλυμα

Ας σχεδιάσουμε τις γραμμές στο γράφημα.

Ας ορίσουμε τα όρια της ολοκλήρωσης. Για να γίνει αυτό, προσδιορίζουμε τις συντεταγμένες των σημείων τομής των γραμμών εξισώνοντας τις παραστάσεις 1 x και - x 2 + 4 x - 2. Με την προϋπόθεση ότι το x δεν είναι μηδέν, η ισότητα 1 x = - x 2 + 4 x - 2 γίνεται ισοδύναμη με την εξίσωση τρίτου βαθμού - x 3 + 4 x 2 - 2 x - 1 = 0 με ακέραιους συντελεστές. Για να ανανεώσετε τη μνήμη σας σχετικά με τον αλγόριθμο για την επίλυση τέτοιων εξισώσεων, μπορούμε να ανατρέξουμε στην ενότητα «Επίλυση κυβικών εξισώσεων».

Η ρίζα αυτής της εξίσωσης είναι x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

Διαιρώντας την παράσταση - x 3 + 4 x 2 - 2 x - 1 με το διώνυμο x - 1, παίρνουμε: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Μπορούμε να βρούμε τις υπόλοιπες ρίζες από την εξίσωση x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

Βρήκαμε το διάστημα x ∈ 1; 3 + 13 2, στο οποίο το σχήμα G περιέχεται πάνω από τη μπλε και κάτω από την κόκκινη γραμμή. Αυτό μας βοηθά να προσδιορίσουμε την περιοχή του σχήματος:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Απάντηση: S (G) = 7 + 13 3 - ln 3 + 13 2

Παράδειγμα 4

Είναι απαραίτητο να υπολογιστεί η περιοχή του σχήματος, η οποία περιορίζεται από τις καμπύλες y = x 3, y = - log 2 x + 1 και τον άξονα της τετμημένης.

Διάλυμα

Ας σχεδιάσουμε όλες τις γραμμές στο γράφημα. Μπορούμε να πάρουμε τη γραφική παράσταση της συνάρτησης y = - log 2 x + 1 από τη γραφική παράσταση y = log 2 x αν την τοποθετήσουμε συμμετρικά γύρω από τον άξονα x και την μετακινήσουμε μία μονάδα προς τα πάνω. Η εξίσωση του άξονα x είναι y = 0.

Ας σημειώσουμε τα σημεία τομής των ευθειών.

Όπως φαίνεται από το σχήμα, οι γραφικές παραστάσεις των συναρτήσεων y = x 3 και y = 0 τέμνονται στο σημείο (0; 0). Αυτό συμβαίνει επειδή x = 0 είναι η μόνη πραγματική ρίζα της εξίσωσης x 3 = 0.

x = 2 είναι η μόνη ρίζα της εξίσωσης - log 2 x + 1 = 0, άρα οι γραφικές παραστάσεις των συναρτήσεων y = - log 2 x + 1 και y = 0 τέμνονται στο σημείο (2; 0).

x = 1 είναι η μόνη ρίζα της εξίσωσης x 3 = - log 2 x + 1 . Από αυτή την άποψη, οι γραφικές παραστάσεις των συναρτήσεων y = x 3 και y = - log 2 x + 1 τέμνονται στο σημείο (1; 1). Η τελευταία πρόταση μπορεί να μην είναι προφανής, αλλά η εξίσωση x 3 = - log 2 x + 1 δεν μπορεί να έχει περισσότερες από μία ρίζες, καθώς η συνάρτηση y = x 3 είναι αυστηρά αύξουσα και η συνάρτηση y = - log 2 x + 1 είναι αυστηρά φθίνουσα.

Η περαιτέρω λύση περιλαμβάνει πολλές επιλογές.

Επιλογή #1

Μπορούμε να φανταστούμε το σχήμα G ως το άθροισμα δύο καμπυλόγραμμων τραπεζοειδών που βρίσκονται πάνω από τον άξονα x, το πρώτο από τα οποία βρίσκεται κάτω από τη μέση γραμμή στο τμήμα x ∈ 0. 1, και το δεύτερο είναι κάτω από την κόκκινη γραμμή στο τμήμα x ∈ 1. 2. Αυτό σημαίνει ότι η περιοχή θα είναι ίση με S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Επιλογή Νο. 2

Το σχήμα G μπορεί να αναπαρασταθεί ως η διαφορά δύο σχημάτων, το πρώτο από τα οποία βρίσκεται πάνω από τον άξονα x και κάτω από την μπλε γραμμή στο τμήμα x ∈ 0. 2, και το δεύτερο μεταξύ των κόκκινων και μπλε γραμμών στο τμήμα x ∈ 1; 2. Αυτό μας επιτρέπει να βρούμε την περιοχή ως εξής:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

Σε αυτή την περίπτωση, για να βρείτε την περιοχή θα πρέπει να χρησιμοποιήσετε έναν τύπο της μορφής S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. Στην πραγματικότητα, οι γραμμές που δέσμευαν το σχήμα μπορούν να αναπαρασταθούν ως συναρτήσεις του ορίσματος y.

Ας λύσουμε τις εξισώσεις y = x 3 και - log 2 x + 1 ως προς το x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Παίρνουμε την απαιτούμενη περιοχή:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Απάντηση: S (G) = 1 ln 2 - 1 4

Παράδειγμα 5

Είναι απαραίτητο να υπολογίσετε την περιοχή του σχήματος, η οποία περιορίζεται από τις γραμμές y = x, y = 2 3 x - 3, y = - 1 2 x + 4.

Διάλυμα

Με κόκκινη γραμμή σχεδιάζουμε τη γραμμή που ορίζεται από τη συνάρτηση y = x. Σχεδιάζουμε τη γραμμή y = - 1 2 x + 4 με μπλε χρώμα και τη γραμμή y = 2 3 x - 3 με μαύρο.

Ας σημειώσουμε τα σημεία τομής.

Ας βρούμε τα σημεία τομής των γραφημάτων των συναρτήσεων y = x και y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 Έλεγχος: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 όχι Είναι η λύση της εξίσωσης x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 είναι η λύση της εξίσωσης ⇒ (4; 2) σημείο τομής i y = x και y = - 1 2 x + 4

Ας βρούμε το σημείο τομής των γραφημάτων των συναρτήσεων y = x και y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Έλεγχος: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 είναι η λύση της εξίσωσης ⇒ (9 ; 3) σημείο a s y = x και y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 Δεν υπάρχει λύση στην εξίσωση

Ας βρούμε το σημείο τομής των ευθειών y = - 1 2 x + 4 και y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1 ) σημείο τομής y = - 1 2 x + 4 και y = 2 3 x - 3

Μέθοδος Νο. 1

Ας φανταστούμε το εμβαδόν του επιθυμητού σχήματος ως το άθροισμα των εμβαδών των μεμονωμένων σχημάτων.

Τότε το εμβαδόν του σχήματος είναι:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Μέθοδος Νο. 2

Το εμβαδόν του αρχικού σχήματος μπορεί να αναπαρασταθεί ως το άθροισμα δύο άλλων σχημάτων.

Στη συνέχεια λύνουμε την εξίσωση της γραμμής σε σχέση με το x και μόνο μετά από αυτό εφαρμόζουμε τον τύπο για τον υπολογισμό της περιοχής του σχήματος.

y = x ⇒ x = y 2 κόκκινη γραμμή y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 μαύρη γραμμή y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

Η περιοχή λοιπόν είναι:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 3 3 2 y + 9 2 - y 2 y y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

Όπως μπορείτε να δείτε, οι τιμές είναι οι ίδιες.

Απάντηση: S (G) = 11 3

Αποτελέσματα

Για να βρούμε το εμβαδόν ενός σχήματος που περιορίζεται από δεδομένες γραμμές, πρέπει να κατασκευάσουμε γραμμές σε ένα επίπεδο, να βρούμε τα σημεία τομής τους και να εφαρμόσουμε τον τύπο για να βρούμε την περιοχή. Σε αυτήν την ενότητα, εξετάσαμε τις πιο κοινές παραλλαγές εργασιών.

Εάν παρατηρήσετε κάποιο σφάλμα στο κείμενο, επισημάνετε το και πατήστε Ctrl+Enter