Диссоциация процесс вещества распадаются. Электролитическая диссоциация кислот, оснований и солей в водных растворах

Проводимость веществами электрического тока или отсутствие проводимости можно наблюдать с помощью простого прибора.


Он состоит из угольных стержней (электродов), присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор сахара,то лампочка не загорается. Но она ярко загорится, если их опустить в раствор хлорида натрия.


Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами.


Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.


К электролитам относятся кислоты, основания и почти все соли.


К неэлектролитам относятся большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.


Электролиты - проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и протекает ток. Очевидно, чем больше ионов в растворе, тем лучше он проводит электрический ток. Чистая вода электрический ток проводит очень плохо.

Различают сильные и слабые электролиты.

Сильные электролиты при растворении вводе полностью диссоциируют на ионы.


К ним относятся:


1) почти все соли;


2) многие минеральные кислоты, например Н 2 SO 4 , HNO 3 , НСl, HBr, HI, НМnО 4 , НСlО 3 , НСlО 4 ;


3) основания щелочных и щелочноземельных металлов.


Слабые электролиты при растворении в воде лишь частично диссоциируют на ионы.


К ним относятся:


1) почти все органические кислоты;


2) некоторые минеральные кислоты, например H 2 СО 3 , Н 2 S, НNO 2 , HClO, H 2 SiO 3 ;


3) многие основания металлов (кроме оснований щелочных и щелочноземельных металлов), а также NH 4 OH, который можно изображать как гидрат аммиака NH 3 ∙H 2 O.


К слабым электролитам относится вода.


Слабые электролиты не могут дать большой концентрации ионов в растворе.

Основные положения теории электролитической диссоциации.

Распад электролитов на ионы при растворении их в воде называется элекролитической диссоциацией.


Так, хлорид натрия NaСl при растворении в воде полностью распадается на ионы натрия Na + и хлорид-ионы Cl - .

Вода образует ионы водорода Н + и гидроксид-ионы ОН - лишь в очень незначительных количествах.


Для объяснения особенностей водных растворов электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи.


Современное содержание этой теории можно свести к следующим трем положениям:


1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы - положительные и отрицательные.


Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na + , Mg 2+ , Аl 3+ и т.д.) - или из нескольких атомов - это сложные ионы (NО 3 - , SO 2- 4 , РО З- 4 и т.д.).


2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами.


Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.


3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).


Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита КA на катион К + и анион А - в общем виде записывается так:


КА ↔ K + + A -


Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

Степень диссоциации.

Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации.


Степенью диссоциации (а) называется отношение числа молекул, распавшихся на ионы (n"), к общему числу растворенных молекул (n):


Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.


Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита, т.е. при разбавлении его водой, степень диссоциации всегда увеличивается. Как правило, увеличивает степень диссоциации и повышение температуры. По степени диссоциации электролиты делят на сильные и слабые.


Рассмотрим смещение равновесия, устанавливающегося между недиссоциированными молекулами и ионами при электролитической диссоциации слабого электролита - уксусной кислоты:


СН 3 СООН ↔ СН 3 СОO - + Н +


При разбавлении раствора уксусной кислоты водой равновесие сместится в сторону образования ионов, - степень диссоциации кислоты возрастает. Наоборот, при упаривании раствора равновесие смещается в сторону образования молекул кислоты - степень диссоциации уменьшается.


Из этого выражения очевидно, что α может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.

Механизм диссоциации

Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При этом образуются гидратированные ионы, т.е. ионы, химически связанные с молекулами воды.


Аналогично диссоциируют и электролиты, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы:



Диссоциация полярных молекул может быть полной или частичной.


Таким образом, электролитами являются соединения с ионной или полярной связью - соли, кислоты и основания. И диссоциировать на ионы они могут в полярных растворителях.

Константа диссоциации.

Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.


Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:


A K → A - + K + .


Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как:



где К - константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита.


Диапазон констант равновесия для разных реакций очень большой - от 10 -16 до 10 15 . Например, высокое значение К для реакции


означает, что если в раствор, содержащий ионы серебра Ag + ,внести металлическую медь, то в момент достижения равновесия концентрация ионов меди намного больше, чем квадрат концентрации ионов серебра 2 . Напротив, низкое значение К в реакции


говорит о том, что к моменту достижения равновесия растворилось ничтожно малое количество иодида серебра AgI.


Обратите особое внимание на форму записи выражений для константы равновесия. Если концентрации некоторых реагентов существенно не изменяются в процессе реакции, то они не записываются в выражение для константы равновесия (такие константы обозначаются К 1).


Так, для реакции меди с серебром неправильным будет выражение:



Правильной будет следующая форма записи:


Это объясняется тем, что концентрации металлических меди и серебра введены в константу равновесия. Концентрации меди и серебра определяются их плотностью и не могут быть изменены. Поэтому эти концентрации нет смысла учитывать при расчете константы равновесия.


Аналогично объясняются выражения констант равновесия при растворении AgCl и AgI


Произведение растворимости. Константы диссоциации малорастворимых солей и гидроксидов металлов называются произведением растворимости соответствующих веществ (обозначается ПР).


Для реакции диссоциации воды


выражение константы будет:




Объясняется это тем, что концентрация воды во время реакций в водных растворах изменяется очень незначительно. Поэтому принимается, что концентрация [Н 2 О] остается постоянной и вводится в константу равновесия.


Кислоты, основания и соли с позиций электролитической диссоциации.


С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.


Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода.


Например:


НCl ↔ Н + + С l - ;


СН 3 СООН ↔ Н + + СН 3 СОО -


Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени - по третьей. Поэтому в водном растворе, например, фосфорной кислоты наряду с молекулами Н 3 РО 4 имеются ионы (в последовательно уменьшающихся количествах) Н 2 РО 2- 4 , НРО 2- 4 и РО 3- 4


Н 3 РО 4 ↔ Н + + Н 2 РО - 4 (первая ступень)


Н 2 РО - 4 ↔ Н + + НРO 2- 4 (вторая ступень)


НРО 2- 4 ↔ Н+ PО З- 4 (третья ступень)


Основностъ кислоты определяется числом катионов водорода, которые образуются при диссоциации.


Так, НCl, HNO 3 - одноосновные кислоты - образуется один катион водорода;


Н 2 S, Н 2 СО 3 , Н 2 SO 4 - двухосновные,


Н 3 РО 4 , Н 3 АsО 4 - трехосновные, так как образуются соответственно два и три катиона водорода.


Из четырех атомов водорода, содержащихся в молекуле уксусной кислоты СН 3 СООН, только один, входящий в карбоксильную группу - СООН, способен отщепляться в виде катиона Н + , - уксусная кислота одноосновная.


Двух - и многоосновные кислоты диссоциируют ступенчато (постепенно).


Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы.


Например:


KOH ↔ K + + OH - ;


NH 4 OH ↔ NH + 4 + OH -


Основания,растворимые в воде называются щелочами. Их немного. Это основания щелочных и щелочноземельных металлов: LiOH, NaОН, КОН, RbОН, СsОН, FrОН и Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 , Rа(ОН) 2 , а также NН 4 ОН. Большинство оснований в воде малорастворимо.


Кислотность основания определяется числом его гидроксильных групп (гидроксогрупп). Например, NН 4 ОН - однокислотное основание, Са(ОН) 2 - двухкислотное, Fе(ОН) 3 - трехкислотное и т. д. Двух- и многокислотные основания диссоциируют ступенчато


Ca(ОН) 2 ↔ Са(ОН) + + OH - (первая ступень)


Ca(OH) + ↔ Ca 2+ + OH - (вторая ступень)


Однако имеются электролиты, которые при диссоциации одновременно образуют катионы водорода, и гидроксид - ионы. Эти электролиты называются амфотерными или амфолитами. К ним относятся вода, гидроксиды цинка, алюминия, хрома и ряд других веществ. Вода, например, диссоциирует на ионы Н + и ОН - (в незначительных количествах):

Н 2 O ↔ Н + + ОН -


Следовательно, у нее в равной мере выражены и кислотные свойства, обусловленные наличием катионов водорода Н + , и щелочные свойства, обусловленные наличием ионов ОН - .


Диссоциацию амфотерного гидроксида цинка Zn(ОН) 2 можно выразить уравнением


2ОН - + Zn 2+ + 2Н 2 О ↔ Zn(ОН) 2 + 2Н 2 О ↔ 2- + 2Н +


Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH 4) и анионы кислотных остатков


Например:


(NH 4) 2 SO 4 ↔ 2NH + 4 + SO 2- 4 ;


Na 3 PO 4 ↔ 3Na + + PO 3- 4


Так диссоциируют средние соли. Кислые же и основные соли диссоциируют ступенчато. У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода. Например:


KHSO 4 ↔ K + + HSO - 4



HSO - 4 ↔ H + + SO 2- 4


У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы.


Mg(OH)Cl ↔ Mg(OH) + + Cl -



При диссоциации кислот роль катионов играют ионы водорода (H +), других катионов при диссоциации кислот не образуется:

HF ↔ H + + F - HNO 3 ↔ H + + NO 3 -

Именно ионы водорода придают кислотам их характерные свойства: кислый вкус, окрашивание индикатора в красный цвет и проч.

Отрицательные ионы (анионы), отщепляемые от молекулы кислоты, составляеют кислотный остаток .

Одной из характеристик диссоциации кислот является их оснОвность - число ионов водорода, содержащихся в молекуле кислоты, которые могут образоываваться при диссоциации:

  • одноосновные кислоты: HCl, HF, HNO 3 ;
  • двухосновные кислоты: H 2 SO 4 , H 2 CO 3 ;
  • трехосновные кислоты: H 3 PO 4 .

Процесс отщепления катионов водорода в многоосновных кислотах происходит ступенчато: сначала отщепляется один ион водорода, затем другой (третий).

Ступенчатая диссоциация двухосновной кислоты:

H 2 SO 4 ↔ H + + HSO 4 - HSO 4 - ↔ H + + HSO 4 2-

Ступенчатая диссоциация трехосновной кислоты:

H 3 PO 4 ↔ H + + H 2 PO 4 - H 2 PO 4 - ↔ H + + HPO 4 2- HPO 4 2- ↔ H + + PO 4 3-

При диссоциации многоосновных кислот самая высокая степень диссоциации приходится на первую ступень. Например, при диссоциации фосфорной кислоты степень диссоциации первой ступени равняется 27%; второй - 0,15%; третьей - 0,005%.

Диссоциация оснований

При диссоциации оснований роль анионов играют гидроксид-ионы (ОH -), других анионов при диссоциации оснований не образуется:

NaOH ↔ Na + + OH -

Кислотность основания определяется кол-вом гидроксид-ионов, образующихся при диссоциации одной молекулы основания:

  • однокислотные основания - KOH, NaOH;
  • двухкислотные основания - Ca(OH) 2 ;
  • трехкислотные основания - Al(OH) 3 .

Многокислотные основания диссоциируют, по аналогии с кислотами, также ступенчато - на каждом этапе отщепляется по одному гидроксид-иону:

Некоторые вещества, в зависимости от условий, могут выступать, как в роли кислот (диссоциировать с отщеплением катионов водорода), так и в роли оснований (диссоциировать с отщеплением гидроксид-ионов). Такие вещества называются амфотерными (см. Кислотно-основные реакции).

Диссоциация Zn(OH) 2 , как основания:

Zn(OH) 2 ↔ ZnOH + + OH - ZnOH + ↔ Zn 2+ + OH -

Диссоциация Zn(OH) 2 , как кислоты:

Zn(OH) 2 + 2H 2 O ↔ 2H + + 2-

Диссоциация солей

Соли диссоциируют в воде на анионы кислотных остатков и катионы металлов (или других соединений).

Классификация диссоциации солей:

  • Нормальные (средние) соли получаются полным одновременным замещением всех атомов водорода в кислоте на атомы металла - это сильные электролиты, полностью диссоциируют в воде с образованием катоинов металла и однокислотного остатка: NaNO 3 , Fe 2 (SO 4) 3 , K 3 PO 4 .
  • Кислые соли содержат в своем составе кроме атомов металла и кислотного остатка, еще один (несколько) атомов водорода - диссоциируют ступенчато с образованием катионов металла, анионов кислотного остатка и катиона водорода: NaHCO 3 , KH 2 PO 4 , NaH 2 PO 4 .
  • Основные соли содержат в своем составе кроме атомов металла и кислотного остатка, еще одну (несколько) гидроксильных групп - диссоциируют с образованием катионов металла, анионов кислотного остатка и гидроксид-иона: (CuOH) 2 CO 3 , Mg(OH)Cl.
  • Двойные соли получаются одновременным замещением атомов водорода в кислоте на атомы различных металлов: KAl(SO 4) 2 .
  • Смешанные соли диссоциируют на катионы металла и анионы нескольких кислотных остатков: CaClBr.
Диссоциация нормальной соли: K 3 PO 4 ↔ 3K + + PO 4 3- Диссоциация кислой соли: NaHCO 3 ↔ Na + + HCO 3 - HCO 3 - ↔ H+ + CO 3 2- Диссоциация основной соли: Mg(OH)Cl ↔ Mg(OH) + + Cl - Mg(OH) + ↔ Mg 2+ + OH - Диссоциация двойной соли: KAl(SO 4) 2 ↔ K + + Al 3+ + 2SO 4 2- Диссоциация смешанной соли: CaClBr ↔ Ca 2+ + Cl - + Br -


Правила составления уравнений электролитической диссоциации веществ

Процесс разрушения или распада электролита на ионы называется электролитической диссоциацией. Составные части распавшихся молекул или кристаллов представляют собой частицы, имеющие заряд. Их называют ионы.

Ионы бывают отрицательные и положительные. Положительные ионы называются катионами, отрицательные — анионами.

Растворы веществ, молекулы или кристаллы которых способны распадаться на ИОНЫ (диссоциировать), могут проводить электрический ток. Именно поэтому их называют электролитами. Часто процесс электролитической диссоциации называют просто: диссоциация.

Процесс растворения вещества отличается от диссоциации тем, что при растворении частицы вещества равномерно распределяются между молекулами растворителя (воды) по всему объему раствора, а в процессе диссоциации частицы вещества (кристаллы или молекулы) распадаются на составные части.

Поэтому при хорошей растворимости вещество не всегда хорошо диссоциирует.

Существуют вещества, молекулы или кристаллы которых хорошо распадаются на ионы. Их называют сильными электролитами.

Сильные электролиты:

Диссоциация сильных электролитов происходит необратимо

Существуют вещества, молекулы или кристаллы которых плохо распадаются на ионы. Их называют слабыми электролитами.

Слабые электролиты:

Диссоциация слабых электролитов происходит обратимо, т. е. ионы, образовавшиеся при распаде молекулы, соединяясь снова, образуют исходную молекулу. Обратимость реакции показывают разнонаправленными стрелками: ↔для слабых электролитов обратная реакция (ассоциация) преобладает над распадом молекул на ионы.

1. Диссоциация сильных электролитов

При диссоциации кислот их молекулы распадаются всегда на положительно заряженные ноны водорода Н и отрицательно заряженные ионы кислотных остатков.

Рассмотрим уравнение диссоциации кислоты сильного электролита. (видео урок)

При диссоциации оснований их молекулы распадаются всегда на положительно заряженные ноны металла и отрицательно заряженныегидроксид-ионы (ОН -).

2. Рассмотрим уравнение диссоциации основания — сильного электролита.(видео урок)

3. При диссоциации солей их молекуль распадаются всегда на по ложительно заряженные ионы металла и отрицательно заряжен ные ноны кислотньтх остатков.

Рассмотрим уравнение диссоциации соли — сильного электролита. (видео урок)

4. Составление уравнения диссоциации соли, в которой кислотный остаток состоит из одного элемента (хлорид (С1), сульфиды (S ), отличается от тех уравнений, в которых молекулы солей имеют в кислотном остатке два элемента. (видео урок)

5. Диссоциация слабых электролитов (видео урок)

диссоциация многоосновных кислот слабых электролитов на ионы происходит постепенно (ступенчато). При этом на каждой стадии диссоциации образуется один ион водорода Н и отрицательно заряженные ионы кислотных остатков. Рассмотрим уравнение диссоциации кислоты— слабого электролита (Н 2 СО 3)

6 Вторая стадия диссоциации HCO 3 - ↔ H + + CO 3 -

Число стадий диссоциации кислоты — слабого электролита равно числу атомов водорода Н в его молекуле.

Диссоциация слабых электролитов многокислотных оснований на ионы происходит постепенно (ступенчато). При этом на каждой стадии диссоциации образуется 1 гидроксид-ион (ОН-).(видео урок)

Такие основания, как правило, содержат несколько групп ОН. Рассмотрим уравнение диссоциации основания — слабого электролита Mg (OH ) 2

Первая стадия диссоциации

Mg (OH ) 2 ↔ MgOH + + OH -

Число стадий диссоциации основания — слабого электролита равно числу групп ОН в его молекуле. (видео урок)

Уравнения диссоциации солей слабых электролитов на ионы записывают в одну стадию. При этом образуются положительно заряженные ИОНЫ металла и отрицательно заряженные ИОНЫ кислотного остатка. Рассмотрим уравнение диссоциации соли — слабого электролита Са 3 (РО 4) 2

Са 3 (РО 4) 2 ↔ 3Са 2+ + 2РО 4 3- (видео урок)

Реакции на опыты (видео урок)

1. Реакции ионного обмена, идущие с выделением газа

Na 2 CO 3 + 2HCl = CO 2 + H 2 O + 2NaCl

2. Реакции ионного обмена, идущие с образованием ярко-окрашенных солей

FeCl 3 + 3KNCS= Fe(NCS) 3 + 3KCl

BaCl 2 + K 2 CrO 4 = BaCrO 4 ↓+ 2KCl

NiSO 4 + 2NaOH = Ni(OH) 2 ↓ + Na 2 SO 4

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

3. Реакция нейтрализации

NaOH + HCl = NaCl + H 2 O

4. Изменение диссоциации электролитов при различных температурах

Электролиты и неэлектролиты

Из уроков физики известно, что растворы од­них веществ способны проводить электрический ток, а других - нет.

Вещества, растворы которых проводят электрический ток, называются электролитами .

Вещества, растворы кото­рых не проводят электрический ток, называются неэлектролитами . Например растворы сахара, спирта, глюкозы и некоторых других веществ не проводят элек­трический ток.

Электролитические диссоциация и ассоциация

Почему же растворы элек­тролитов проводят электри­ческий ток?

Шведский ученый С. Ар­рениус, изучая электропро­водность различных веществ, пришел в 1877 г. к выводу, что причиной электропровод­ности является наличие в растворе ионов , которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называ­ется электролитической диссоциацией .

С. Аррениус, который придерживался физиче­ской теории растворов, не учитывал взаимодей­ствия электролита с водой и считал, что в раство­рах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяков- ский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита про­исходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы . Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е. «одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угло­вую форму. Молекула воды схематически представ­лена ниже.

Как правило, легче всего диссоциируют веще­ства с ионной связью и, соответственно, с ионной кристаллической решеткой, так как они уже состо­ят из готовых ионов. При их растворении диполи во­ды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения . В ре­зультате связь между ионами ослабевает, и про­исходит переход ионов из кристалла в раствор. Очевидно, что последовательность про­цессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

1) ориентация молекул (диполей) воды около ио­нов кристалла;

2) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

3) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно от­разить с помощью следующего уравнения:

Аналогично диссоциируют и электролиты, в мо­лекулах которых ковалентная связь (например, мо­лекулы хлороводорода HCl, смотри ниже); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ион­ную; последовательность процессов, происходящих при этом, будет такой:

1) ориентация молекул воды вокруг полюсов моле­кул электролита;

2) гидратация (взаимодействие) молекул воды с молекулами электролита;

3) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

4) диссоциация (распад) молекул электролита на гидратированные ионы.


Упрощенно процесс диссоциации соляной кис­лоты можно отразить с помощью следующего урав­нения:

Следует учитывать, что в растворах электро­литов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Ассоциация в растворах происходит параллельно с диссоциацией, поэтому в уравнени­ях реакций ставят знак обратимости.


Свойства гидратированных ионов отличаются от свойств негидратированных. Например, негидрати­рованный ион меди Cu 2+ - белый в безводных кри­сталлах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами во­ды Cu 2+ nH 2 O. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Степень электролитической диссоциации

В растворах электролитов наряду с ионами при­сутствуют и молекулы. Поэтому растворы электро­литов характеризуются степенью диссоциации , ко­торая обозначается греческой буквой а («альфа»).

Это отношение числа частиц, распавшихся на ионы (N g), к общему числу растворенных частиц (N p).

Степень диссоциации электролита определяется опытным путем и выражается в долях или про­центах. Если а = 0, то диссоциация отсутствует, а если а = 1, или 100 %, то электролит полностью распадается на ионы. Различные электролиты име­ют различную степень диссоциации, т. е. степень диссоциации зависит от природы электролита. Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.

По степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные электролиты - это электролиты, кото­рые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов зна­чение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: H 2 SO 4 , HCl, HNO 3 ;

3) все щелочи, например: NaOH, KOH.

Слабые электролиты - это такие электроли­ты, которые при растворении в воде почти не дис­социируют на ионы. У таких электролитов значе­ние степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты - H 2 S, H 2 CO 3 , HNO 2 ;

2) водный раствор аммиака NH 3 H 2 O;

4) некоторые соли.

Константа диссоциации

В растворах слабых электролитов вследствие их неполной диссоциации устанавливается динамичес­кое равновесие между недиссоциированными моле­кулами и ионами . Например, для уксусной кислоты:

Можно применить к этому равновесию закон действующих масс и записать выражение констан­ты равновесия:

Константу равновесия, характеризующую про­цесс диссоциации слабого электролита, называют константой диссоциации .

Константа диссоциации характеризует способ­ность электролита (кислоты, основания, воды) диссо­циировать на ионы . Чем больше константа, тем лег­че электролит распадается на ионы, следовательно, тем он сильнее. Значения констант диссоциации для слабых электролитов приводятся в справочниках.

Основные положения теории электролитической диссоциации

1. При растворении в воде электролиты диссо­циируют (распадаются) на положительные и отри­цательные ионы.

Ионы - это одна из форм существования хими­ческого элемента. Например, атомы металла натрия Na 0 энергично взаимодейству­ют с водой, образуя при этом щелочь (NaOH) и водород Н 2 , в то время как ионы натрия Na + таких продуктов не обра­зуют. Хлор Cl 2 имеет желто­зеленый цвет и резкий запах, ядовит, а ионы хлора Cl — бесцветны, не ядовиты, лишены запаха.

Ионы - это положительно или отрицательно заряженные частицы, в которые превращаются атомы или группы атомов одного или нескольких химических элементов в результате отдачи или присоединения электронов.

В растворах ионы беспорядочно передвигаются в различных направлениях.

По составу ионы делятся на простые - Cl — , Na + и сложные - NH 4 + , SO 2 — .

2. Причиной диссоциации электролита в вод­ных растворах является его гидратация, т. е. взаи­модействие электролита с молекулами воды и раз­рыв химической связи в нем.

В результате такого взаимодействия образуются гидратированные, т. е. связанные с молекулами во­ды, ионы. Следовательно, по наличию водной обо­лочки ионы делятся на гидратированные (в раствоpax и кристаллогидратах) и негидратированные (в безводных солях).

3. Под действием электрического тока положитель­но заряженные ионы движутся к отрицательному по­люсу источника тока - катоду и поэтому называют­ся катионами, а отрицательно заряженные ионы движутся к положительному полюсу ис­точника тока - аноду и по­этому называются анионами.

Следовательно, существу­ет еще одна классификация ионов - по знаку их заряда .

Сумма зарядов катионов (Н + , Na + , NH 4 + , Cu 2+) равна сумме зарядов анионов (Cl — , OH — , SO 4 2-), вследствие че­го растворы электролитов (HCl, (NH 4) 2 SO 4 , NaOH, CuSO 4) остаются электронейтральными.

4. Электролитическая диссоциация - процесс обратимый для слабых электролитов.

Наряду с процессом диссоциации (распад элек­тролита на ионы) протекает и обратный процесс - ассоциация (соединение ионов). Поэтому в уравне­ниях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

5. Не все электролиты в одинаковой мере диссо­циируют на ионы.

Зависит от природы элек­тролита и его концентрации. Химические свойства растворов электролитов определяются свойствами тех ионов, которые они образуют при диссоциации.

Свойства растворов слабых электролитов об­условлены молекулами и ионами, образовавшими­ся в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул CH 3 COOH, кислый вкус и изменение окра­ски индикаторов связаны с наличием в растворе ионов H + .

Свойства растворов сильных электролитов опре­деляются свойствами ионов, которые образуются при их диссоциации.

Например, общие свойства кислот, такие как кислый вкус, изменение окраски индикаторов и др., обусловлены наличи­ем в их растворах катионов водорода (точнее, ионов оксония H 3 O +). Общие свойства щелочей, такие как мылкость на ощупь, изменение окраски индикаторов и др. связаны с присутствием в их рас­творах гидроксид-ионов OH — , а свойства солей - с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Согласно теории электролитической диссоциа­ции все реакции в водных растворах электролитов являются реакциями между ионами . Этим обуслов­лена высокая скорость многих химических реак­ций в растворах электролитов.

Реакции, протекающие между ионами, называ­ют ионными реакциями , а уравнения этих реак­ций - ионными уравнениями .

Реакции ионного обмена в водных растворах мо­гут протекать:

1. Необратимо , до конца.

2. Обратимо , то есть протекать одновременно в двух противоположных направлениях. Реакции обмена между сильными электролита­ми в растворах протекают до конца или практи­чески необратимы, когда ионы, соединяясь друг с другом, образуют вещества:

а) нерастворимые;

б) малодиссоциирующие (слабые электролиты);

в) газообразные.

Приведем несколько примеров молекулярных и сокращенных ионных уравнений:

Реакция необратима , т. к. один из ее про­дуктов - нерастворимое вещество.

Реакция нейтрализации необратима , т. к. об­разуется малодиссоциирующее вещество - вода.

Реакция необратима , т. к. образуется газ CO 2 и малодиссоциирующее вещество - вода.

Если среди исходных веществ и среди продуктов реакции имеются слабые электролиты или мало­растворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают.

В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.

Например:

Равновесие смещается в сторону образования более слабого электролита - H 2 O. Однако до конца такая реакция протекать не будет: в растворе оста­ются недиссоциированные молекулы уксусной кис­лоты и гидроксид-ионы.

Если исходные вещества - сильные электро­литы, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при сме­шивании растворов образуется смесь ионов.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Данный урок посвящен изучению темы «Электролитическая диссоциация». В процессе изучения этой темы Вы поймете суть некоторых удивительных фактов: почему растворы кислот, солей и щелочей проводят электрический ток; почему температура кипения раствора электролита выше по сравнению с раствором неэлектролита.

Тема: Химическая связь.

Урок: Электролитическая диссоциация

Тема нашего урока - «Электролитическая диссоциация ». Мы попробуем объяснить некоторые удивительные факты:

Почему растворы кислот, солей и щелочей проводят электрический ток.

Почему температура кипения раствора электролита всегда будет выше, чем температура кипения раствора не электролита той же концентрации.

Сванте Аррениус

В 1887 году шведский физико - химик Сванте Аррениус, исследуя электропроводность водных растворов, высказал предположение, что в таких растворах вещества распадаются на заряженные частицы - ионы, которые могут передвигаться к электродам - отрицательно заряженному катоду и положительно заряженному аноду.

Это и есть причина электрического тока в растворах. Данный процесс получил название электролитической диссоциации (дословный перевод - расщепление, разложение под действием электричества). Такое название также предполагает, что диссоциация происходит под действием электрического тока. Дальнейшие исследования показали, что это не так: ионы являются только переносчиками зарядов в растворе и существуют в нем независимо от того, проходит через раствор ток или нет. При активном участии Сванте Аррениуса была сформулирована теория электролитической диссоциации, которою часто называют в честь этого ученого. Основная идея данной теории заключается в том, что электролиты под действием растворителя самопроизвольно распадаются на ионы. И именно эти ионы являются носителями заряда и отвечают за электропроводность раствора.

Электрический ток - это направленное движение свободных заряженных частиц . Вы уже знаете, что растворы и расплавы солей и щелочей электропроводны, так как состоят не из нейтральных молекул, а из заряженных частиц - ионов. При расплавлении или растворении ионы становятся свободными переносчиками электрического заряда.

Процесс распада вещества на свободные ионы при его растворении или расплавлении называют электролитической диссоциацией.

Рис. 1. Схема распада на ионы хлорида натрия

Сущность электролитической диссоциации заключается в том, что ионы становятся свободными под влиянием молекулы воды. Рис.1. Процесс распада электролита на ионы отображают с помощью химического уравнения. Запишем уравнение диссоциации хлорида натрия и бромида кальция. При диссоциации одного моля хлорида натрия образуются один моль катионов натрия и один моль хлорид - анионов. NaCl Na + + Cl -

При диссоциации одного моля бромида кальция образуется один моль катионов кальция и два моля бромид - анионов.

Ca Br 2 Ca 2+ + 2 Br -

Обратите внимание: так как в левой части уравнения записана формула электронейтральной частицы, то суммарный заряд ионов должен быть равен нулю .

Вывод : при диссоциации солей образуются катионы металла и анионы кислотного остатка.

Рассмотрим процесс электролитической диссоциации щелочей. Запишем уравнение диссоциации в растворе гидроксида калия и гидроксида бария.

При диссоциации одного моля гидроксида калия образуются один моль катионов калия и один моль гидроксид-анионов. KOH K + + OH -

При диссоциации одного моля гидроксида бария образуются один моль катионов бария и два моля гидроксид - анионов. Ba (OH ) 2 Ba 2+ + 2 OH -

Вывод: при электролитической диссоциации щелочей образуются катионы металла и гидроксид - анионы.

Нерастворимые в воде основания практически не подвергаются электролитической диссоциации , так как в воде они практически нерастворимы, а при нагревании - разлагаются, так что расплав их получить не удается.

Рис. 2. Строение молекул хлороводорода и воды

Рассмотри процесс электролитической диссоциации кислот. Молекулы кислот образованы ковалентной полярной связью, а значит, кислоты состоят не из ионов, а из молекул.

Возникает вопрос - как же тогда кислота диссоциирует, т. е как в кислотах образуются свободные заряженные частицы? Оказывается, ионы образуются в растворах кислот именно при растворении.

Рассмотрим процесс электролитической диссоциации хлороводорода в воде , но для этого запишем строение молекул хлороводорода и воды. Рис.2.

Обе молекулы образованы ковалентной полярной связью. Электронная плотность в молекуле хлороводорода смещена к атому хлора, а в молекуле воды - к атому кислорода. Молекула воды способна оторвать катион водорода от молекулы хлороводорода, при этом образуется катион гидроксония Н 3 О + .

В уравнении реакции электролитической диссоциации не всегда учитывают образование катиона гидроксония - обычно говорят, что образуется катион водорода.

Тогда уравнение диссоциации хлороводорода выглядит так:

HCl H + + Cl -

При диссоциации одного моля хлороводорода образуются один моль катиона водорода и один моль хлорид - анионов.

Ступенчатая диссоциация серной кислоты

Рассмотри процесс электролитической диссоциации серной кислоты. Серная кислота диссоциирует ступенчато, в две стадии.

I -я стадия диссоциации

На первой стадии отрывается один катион водорода и образуется гидросульфат-анион.

II - я стадия диссоциации

На второй стадии происходит дальнейшая диссоциация гидросульфат - анионов. HSO 4 - H + + SO 4 2-

Эта стадия является обратимой, то есть, образующиеся сульфат - ионы могут присоединять к себе катионы водорода и превращаться в гидросульфат - анионы. Это показано знаком обратимости.

Существуют кислоты, которые даже на первой стадии диссоциируют не полностью - такие кислоты являются слабыми. Например, угольная кислота Н 2 СО 3 .

Теперь мы можем объяснить, почему температура кипения раствора электролита будет выше, чем температура кипения раствора неэлектролита.

При растворении молекулы растворенного вещества взаимодействуют с молекулами растворителя, например - воды. Чем больше частиц растворенного вещества находится в одном объеме воды, тем будет выше его температура кипения. Теперь представим, что в одинаковых объемах воды растворили равные количества вещества-электролита и вещества - неэлектролита. Электролит в воде распадется на ионы, а значит - число его частиц будет больше, чем в случае растворения неэлектролита. Таким образом, наличие свободных частиц в электролите объясняет, почему температура кипения раствора электролита будет выше, чем температура кипения раствора неэлектролита.

Подведение итога урока

На этом уроке вы узнали, что растворы кислот, солей и щелочей электропроводны, так как при их растворении образуются заряженные частицы - ионы. Такой процесс называется электролитической диссоциацией. При диссоциации солей образуются катионы металла и анионы кислотных остатков. При диссоциации щелочей образуются катионы металла и гидроксид-анионы. При диссоциации кислот образуются катионы водорода и анионы кислотного остатка.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2009 г.119с.:ил.

2. Попель П.П.Химия:8 кл.: учебник для общеобразовательных учебных заведений/П.П. Попель, Л.С.Кривля. -К.: ИЦ «Академия»,2008.-240 с.: ил.

3. Габриелян О.С. Химия. 9 класс. Учебник. Издательство: Дрофа.:2001. 224с.

1. №№ 1,2 6 (с.13) Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2009 г.119с.:ил.

2. Что такое электролитическая диссоциация? Вещества, каких классов относятся к электролитам?

3. Вещества, с каким типом связи являются электролитами?