Магнитный поток измеряется в. Магнитный поток — Гипермаркет знаний

«Физика - 11 класс»

Электромагнитная индукция

Английский физик Майкл Фарадей был уверен в единой природе электрических и магнитных явлений.
Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле - магнитное.
В 1831 году Фарадей открыл явление электромагнитной индукции, легшее в основу устройства генераторов, превращающих механическую энергию в энергию электрического тока.


Явление электромагнитной индукции

Явление электромагнитной индукции - это возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

Для своих многочисленных опытов Фарадей использовал две катушки, магнит, выключатель, источник постоянного тока и гальванометр.

Электрический ток способен намагнитить кусок железа. Не может ли магнит вызвать появление электрического тока?

В результате опытов Фарадей установил главные особенности явления электромагнитной индукции:

1). индукционный ток возникает в одной из катушек в момент замыкания или размыкания электрической цепи другой катушки, неподвижной относительно первой.

2) индукционный ток возникает при изменении силы тока в одной из катушек с помощью реостата 3). индукционный ток возникает при движении катушек относительно друг друга 4). индукционный ток возникает при движении постоянного магнита относительно катушки

Вывод:

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.
И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток.

При этом не важно. что является причиной изменения числа линий магнитной индукции.
Это может быть и изменение числа линий магнитной индукции, пронизывающих поверхность, ограниченную неподвижным проводящим контуром, вследствие изменения силы тока в соседней катушке,

и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве, и т.д.

Магнитный поток

Магнитный поток - это характеристика магнитного поля, которая зависит от вектора магнитной индукции во всех точках поверхности, ограниченной плоским замкнутым контуром.

Есть плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле.
Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол α с направлением вектора магнитной индукции

Магнитным потоком Ф (потоком вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла α между векторами и :

Ф = BScos α

где
Вcos α = В n - проекция вектора магнитной индукции на нормаль к плоскости контура.
Поэтому

Ф = B n S

Магнитный поток тем больше, чем больше В n и S .

Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.

Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S .

Единицей магнитного потока является вебер .
Магнитный поток в 1 вебер (1 Вб ) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Взаимосвязь электрических и магнитных полей замечена очень давно. Данную связь еще в 19 веке обнаружил английский ученый-физик Фарадей и дал ему название . Она появляется в тот момент, когда магнитный поток пронизывает поверхность замкнутого контура. После того как происходит изменение магнитного потока в течение определенного времени, в этом контуре наблюдается появление электрического тока.

Взаимосвязь электромагнитной индукции и магнитного потока

Суть магнитного потока отображается известной формулой: Ф = BS cos α. В ней Ф является магнитным потоком, S - поверхность контура (площадь), В - вектор магнитной индукции. Угол α образуется за счет направления вектора магнитной индукции и нормали к поверхности контура. Отсюда следует, что максимального порога магнитный поток достигнет при cos α = 1, а минимального - при cos α = 0.

Во втором варианте вектор В будет перпендикулярен к нормали. Получается, что линии потока не пересекают контур, а лишь скользят по его плоскости. Следовательно, определять характеристики будут линии вектора В, пересекающие поверхность контура. Для расчета в качестве единицы измерения используется вебер: 1 вб = 1в х 1с (вольт-секунда). Еще одной, более мелкой единицей измерения служит максвелл (мкс). Он составляет: 1 вб = 108 мкс, то есть 1 мкс = 10-8 вб.

Для исследования Фарадеем были использованы две проволочные спирали, изолированные между собой и размещенные на катушке из дерева. Одна из них соединялась с источником энергии, а другая - с гальванометром, предназначенным для регистрации малых токов. В тот момент, когда цепь первоначальной спирали замыкалась и размыкалась, в другой цепи стрелка измерительного устройства отклонялась.

Проведение исследований явления индукции

В первой серии опытов Майкл Фарадей вставлял намагниченный металлический брусок в катушку, подключенную к току, а затем вынимал его наружу (рис. 1, 2).

1 2

В случае помещения магнита в катушку, подключенную к измерительному прибору, в цепи начинает протекать индукционный ток. Если магнитный брусок удаляется из катушки, индукционный ток все равно появляется, но его направление становится уже противоположным. Следовательно, параметры индукционного тока будут изменены по направлению движения бруска и в зависимости от полюса, которым он помещается в катушку. На силу тока оказывает влияние быстрота перемещения магнита.

Во второй серии опытов подтверждается явление, при котором изменяющийся ток в одной катушке, вызывает индукционный ток в другой катушке (рис. 3, 4, 5). Это происходит в моменты замыкания и размыкания цепи. От того, замыкается или размыкается электрическая цепь, будет зависеть и направление тока. Кроме того, эти действия есть ни что иное, как способы изменения магнитного потока. При замыкании цепи он будет увеличиваться, а при размыкании - уменьшаться, одновременно пронизывая первую катушку.

3 4

5

В результате опытов было установлено, что возникновение электрического тока внутри замкнутого проводящего контура возможно лишь в том случае, когда они помещаются в переменное магнитное поле. При этом, поток может изменяться во времени любыми способами.

Электрический ток, появляющийся под действием электромагнитной индукции, получил название индукционного, хотя это и не будет током в общепринятом понимании. Когда замкнутый контур оказывается в магнитном поле, происходит генерация ЭДС с точным значением, а не тока, зависящего от разных сопротивлений.

Данное явление получило название ЭДС индукции, которую отражает формула: Еинд = - ∆Ф/∆t. Ее значение совпадает с быстротой изменений магнитного потока, пронизывающего поверхность замкнутого контура, взятого с отрицательным значением. Минус, присутствующий в данном выражении, является отражением правила Ленца.

Правило Ленца в отношении магнитного потока

Известное правило было выведено после проведения цикла исследований в 30-х годах 19 века. Оно сформулировано в следующем виде:

Направление индукционного тока, возбуждаемого в замкнутом контуре изменяющимся магнитным потоком, оказывает влияние на создаваемое им магнитное поле таким образом, что оно в свою очередь создает препятствие магнитному потоку, вызывающему появление индукционного тока.

Когда магнитный поток увеличивается, то есть становится Ф > 0, а ЭДС индукции снижается и становится Еинд < 0, в результате этого появляется электроток с такой направленностью, при которой под влиянием его магнитного поля происходит изменение потока в сторону уменьшения при его прохождении через плоскость замкнутого контура.

Если поток снижается, то наступает обратный процесс, когда Ф < 0 и Еинд > 0, то есть действие магнитного поля индукционного тока, происходит увеличение магнитного потока, проходящего через контур.

Физический смысл правила Ленца заключается в отражении закона сохранения энергии, когда при уменьшении одной величины, другая увеличивается, и, наоборот, при увеличении одной величины другая будет уменьшаться. Различные факторы влияют и на ЭДС индукции. При вводе в катушку поочередно сильного и слабого магнита, прибор соответственно будет показывать в первом случае более высокое, а во втором - более низкое значение. То же самое происходит, когда изменяется скорость движения магнита.

На представленном рисунке видно, как определяется направление индукционного тока с применением правила Ленца. Синий цвет соответствует силовым линиям магнитных полей индукционного тока и постоянного магнита. Они расположены в направлении полюсов от севера к югу, которые имеются в каждом магните.

Изменяющийся магнитный поток приводит к возникновению индукционного электрического тока, направление которого вызывает противодействие со стороны его магнитного поля, препятствующее изменениям магнитного потока. В связи с этим, силовые линии магнитного поля катушки направлены в сторону, противоположную силовым линиям постоянного магнита, поскольку его движение происходит в сторону этой катушки.

Для определения направления тока используется с правой резьбой. Он должен ввинчиваться таким образом, чтобы направление его поступательного движения совпадало с направлением индукционных линий катушки. В этом случае направления индукционного тока и вращения рукоятки буравчика будут совпадать.

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Закон Ампера используется для установления единицы силы тока – ампер.

Ампер – сила тока неизменного по величине, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого сечения, расположенным на расстоянии один метр, один от другого в вакууме, вызывает между этими проводниками силу в .

, (2.4.1)

Здесь ; ; ;

Определим отсюда размерность и величину в СИ.

, следовательно

, или .

Из закона Био–Савара–Лапласа, для прямолинейного проводника с током , тоже можно найти размерность индукции магнитного поля:

Тесла – единица измерения индукции в СИ. .

Гаусс – единица измерения в Гауссовой системе единиц (СГС).

1 Тл равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющим магнитный момент , действует вращающий момент .

Тесла Никола (1856–1943) – сербский ученый в области электротехники и радиотехники. Имел огромное количество изобретений. Изобрел электрический счетчик, частотомер и др. Разработал ряд конструкций многофазных генераторов, электродвигателей и трансформаторов. Сконструировал ряд радиоуправляемых самоходных механизмов. Изучал физиологическое действие токов высокой частоты. Построил в 1899 г. радиостанцию на 200 кВт в Колорадо и радиоантенну высотой 57,6 м в Лонг-Айленде (башня Ворденклиф). Вместе с Эйнштейном и Опенгеймером в 1943 г. участвовал в секретном проекте по достижению невидимости американских кораблей (Филадельфийский эксперимент). Современники говорили о Тесле как о мистике, ясновидце, пророке, способном заглянуть в разумный космос и мир мертвых. Он верил, что с помощью электромагнитного поля можно перемещаться в пространстве и управлять временем.

Другое определение: 1 Тл равен магнитной индукции, при которой магнитный поток сквозь площадку 1 м 2 , перпендикулярную направлению поля , равен 1 Вб.

Единица измерения магнитного потока Вб, получила свое название в честь немецкого физика Вильгельма Вебера (1804–1891) – профессора университетов в Галле, Геттингене, Лейпциге.

Как мы уже говорили, магнитный поток Ф через поверхность S – одна из характеристик магнитного поля (рис. 2.5):

Единица измерения магнитного потока в СИ:

. , а так как , то .

Здесь Максвелл (Мкс) – единица измерения магнитного потока в СГС названая в честь знаменитого английского ученого Джеймса Максвелла (1831–1879), создателя теории электромагнитного поля.

Напряженность магнитного поля Н измеряется в .

, .

Сведем в одну таблицу основные характеристики магнитного поля.

Таблица 2.1

Наименование

Что такое магнитный поток?

Для того чтобы дать точную количественную формулировку закона электромагнитной индукции Фарадея, нужно ввести новую величину - поток вектора магнитной индукции .

Вектор магнитной индукции характеризует магнитное поле в каждой точке пространства. Можно ввести еще одну величину, зависящую от значений вектора не в одной точке, а во всех точках поверхности, ограниченной плоским замкнутым контуром.

Для этого рассмотрим плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле (рис. 2.4). Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол с направлением вектора магнитной индукции . Магнитным потоком Ф (потоком Вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла между векторами и :

Произведение представляет собой проекцию вектора магнитной индукции на нормаль к плоскости контура. Поэтому

Магнитный поток тем больше, чем больше В n и S. Величина Ф названа «магнитным потоком» по аналогии с потоком воды, который тем больше, чем больше скорость течения воды и площадь сечения трубы.

Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S.

Единицей магнитного потока является вебер. в 1 вебер (1 Вб) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.

Обобщенные сведения о магнитном потоке

Сегодняшний урок по физике у нас с вами посвящен теме о магнитном потоке. Для того чтобы дать точную количественную формулировку закона электромагнитной индукции Фарадея нам нужно будет ввести новую величину, которая собственно называется магнитный поток или поток вектора магнитной индукции.

Из предыдущих классов вы уже знаете, что магнитное поле описывается вектором магнитной индукции B. Исходя из понятия вектор индукции B, мы и можем найти магнитный поток. Для этого мы с вами рассмотрим замкнутый проводник или контур с площадью S. Допустим, через него проходит однородное магнитное поле с индукцией B. Тогда магнитным потоком F вектор магнитной индукции через поверхность площадью S называют величину произведения модуля вектора магнитной индукции B на площадь контура S и на cos угла между вектором B и нормалью cos альфа:



В общем, мы с вами пришли к такому выводу, что если поместить в магнитное поле контур с током, то все линии индукции этого магнитного поля будут проходить через контур. То есть, можно смело говорить, что линия магнитной индукции и есть этой самой магнитной индукцией, которая находится в каждой точке этой линии. Или же можно сказать, что линии магнитной индукции являются потоком вектора индукции по ограниченному и описываемому этими линиями пространству, т.е магнитным потоком.

А теперь давайте вспомним, чему равняется единица магнитного потока:



Направление и количество магнитного потока

Но необходимо так же знать, что каждый магнитный поток имеет свое направление и количественное значение. В этом случае можно сказать, что контур проникает в определенный магнитный поток. И также, следует отметить, что от величины контура зависит и величина магнитного потока, то есть, чем больше размер контура, тем больший магнитный поток будет проходить через него.

Здесь можно подвести итог и сказать, что магнитный поток зависит от площади пространства, через которую он проходит. Если мы, например, возьмем неподвижную рамку определенного размера, которая пронизана постоянным магнитным полем, то в этом случае магнитный поток, который проходит через эту рамку, будет постоянным.

При увеличении силы магнитного поля, естественно и увеличится магнитная индукция. Кроме того и пропорционально возрастет величина магнитного потока в зависимости от возросшей величине индукции.

Практическое задание

1. Посмотрите внимательно на данный рисунок и дайте ответ на вопрос: Как может измениться магнитный поток, если контур будет вращаться вокруг оси ОО"?


2. Как вы думаете, как может измениться магнитный поток, если взять замкнутый контур, который расположен под некоторым углом к линиям магнитной индукции и его площадь уменьшить в два раза, а модуль вектора увеличить в четыре раза?
3. Посмотрите на варианты ответов и скажите, как нужно сориентировать рамку в однородном магнитном поле, чтобы поток через эту рамку равнялся нулю? Какой из ответов будет правильным?



4. Внимательно посмотрите на рисунок изображенных контуров I и II и дайте ответ, как при их вращении может измениться магнитный поток?



5. Как вы думаете, от чего зависит направление индукционного тока?
6. В чем отличие магнитной индукции от магнитного потока? Назовите эти отличия.
7. Назовите формулу магнитного потока и величины, которые входят в эту формулу.
8. Какие вы знаете способы измерения магнитного потока?

Это интересно знать

А известно ли вам, что повышенная солнечная активность влияет на магнитное поле Земли и приблизительно каждые одиннадцать с половиной лет она возрастает так, что может нарушить радиосвязь, вызвать сбой работы компаса и отрицательно сказываться на самочувствии человека. Такие процессы называют магнитными бурями.

Мякишев Г. Я., Физика . 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.