В каких единицах выражается удельная теплоемкость. В чем заключается лабораторная работа по измерению удельной теплоемкости? Некоторые примеры и значения для различных веществ

05.04.2019, 01:42

Удельная теплоемкость

Теплоемкость - это количество теплоты, поглощаемой телом при нагревании на 1 градус.

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой - растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать доль­ше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1 °С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 °С, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг·K)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг·K) , а удельная теплоемкость льда Дж/(кг·K) ; алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг·K) , а в жидком - Дж/(кг·K) .

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.


Удельная теплоемкость твердых веществ

В таблице приведены средние значения удельной теплоемкости веществ в интервале температур от 0 до 10°С(если не указана другая температура)

Вещество Удельная теплоемкость, кДж/(кг·K)
Азот твердый(при t=-250 °С) 0,46
Бетон (при t=20 °С) 0,88
Бумага (при t=20 °С) 1,50
Воздух твердый (при t=-193 °С) 2,0
Графит
0,75
Дерево дуб
2,40
Дерево сосна, ель
2,70
Каменная соль
0,92
Камень
0,84
Кирпич (при t=0 °С) 0,88


Удельная теплоемкость жидкостей

Вещество Температура,°C
Бензин (Б-70)
20
2,05
Вода
1-100
4,19
Глицерин
0-100
2,43
Керосин 0-100
2,09
Масло машинное
0-100
1,67
Масло подсолнечное
20
1,76
Мед
20
2,43
Молоко
20
3,94
Нефть 0-100
1,67-2,09
Ртуть
0-300
0,138
Спирт
20
2,47
Эфир
18
3,34

Удельная теплоемкость металлов и сплавов

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Алюминий
0-200
0,92
Вольфрам
0-1600
0,15
Железо
0-100
0,46
Железо
0-500
0,54
Золото
0-500
0,13
Иридий
0-1000
0,15
Магний
0-500
1,10
Медь
0-500
0,40
Никель
0-300
0,50
Олово
0-200
0,23
Платина
0-500
0,14
Свинец
0-300
0,14
Серебро
0-500
0,25
Сталь
50-300
0,50
Цинк
0-300
0,40
Чугун
0-200
0,54

Удельная теплоемкость расплавленных металлов и сжиженных сплавов

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Азот
-200,4
2,01
Алюминий
660-1000
1,09
Водород
-257,4
7,41
Воздух
-193,0
1,97
Гелий
-269,0
4,19
Золото
1065-1300
0,14
Кислород
-200,3
1,63
Натрий
100
1,34
Олово
250
0,25
Свинец
327
0,16
Серебро
960-1300
0,29

Удельная теплоемкость газов и паров

при нормальном атмосферном давлении

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Азот
0-200
1,0
Водород
0-200
14,2
Водяной пар
100-500
2,0
Воздух
0-400
1,0
Гелий
0-600
5,2
Кислород
20-440
0,92
Оксид углерода(II)
26-200
1,0
Оксид углерода(IV) 0-600
1,0
Пары спирта
40-100
1,2
Хлор
13-200
0,50

/(кг·К) и т.д.

Удельная теплоёмкость обычно обозначается буквами c или С , часто с индексами.

На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C. Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении (C P ) и при постоянном объёме (C V ), вообще говоря, различны.

Формула расчёта удельной теплоёмкости:

c=\frac{Q}{ m\Delta T}, где c - удельная теплоёмкость, Q - количество теплоты , полученное веществом при нагреве (или выделившееся при охлаждении), m - масса нагреваемого (охлаждающегося) вещества, ΔT - разность конечной и начальной температур вещества.

Удельная теплоёмкость может зависеть (и в принципе, строго говоря, всегда, более или менее сильно, зависит) от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) \delta T и \delta Q:

c(T) = \frac 1 {m} \left(\frac{\delta Q}{\delta T}\right).

Значения удельной теплоёмкости некоторых веществ

(Для газов приведены значения удельной теплоёмкости в изобарном процессе (C p))

Таблица I: Стандартные значения удельной теплоёмкости
Вещество Агрегатное состояние Удельная
теплоёмкость,
кДж/(кг·K)
воздух (сухой) газ 1,005
воздух (100 % влажность) газ 1,0301
алюминий твёрдое тело 0,903
бериллий твёрдое тело 1,8245
латунь твёрдое тело 0,37
олово твёрдое тело 0,218
медь твёрдое тело 0,385
молибден твёрдое тело 0,250
сталь твёрдое тело 0,462
алмаз твёрдое тело 0,502
этанол жидкость 2,460
золото твёрдое тело 0,129
графит твёрдое тело 0,720
гелий газ 5,190
водород газ 14,300
железо твёрдое тело 0,444
свинец твёрдое тело 0,130
чугун твёрдое тело 0,540
вольфрам твёрдое тело 0,134
литий твёрдое тело 3,582
жидкость 0,139
азот газ 1,042
нефтяные масла жидкость 1,67 - 2,01
кислород газ 0,920
кварцевое стекло твёрдое тело 0,703
вода 373 К (100 °C) газ 2,020
вода жидкость 4,187
лёд твёрдое тело 2,060
сусло пивное жидкость 3,927
Значения приведены для стандартных условий , если это не оговорено особо.
Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов
Вещество Удельная
теплоёмкость
кДж/(кг·K)
асфальт 0,92
полнотелый кирпич 0,84
силикатный кирпич 1,00
бетон 0,88
кронглас (стекло) 0,67
флинт (стекло) 0,503
оконное стекло 0,84
гранит 0,790
талькохлорит 0,98
гипс 1,09
мрамор , слюда 0,880
песок 0,835
сталь 0,47
почва 0,80
древесина 1,7

См. также

Напишите отзыв о статье "Удельная теплоёмкость"

Примечания

Литература

  • Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
  • Сивухин Д. В. Общий курс физики. - Т. II. Термодинамика и молекулярная физика.
  • E. М. Лифшиц // под. ред. А. М. Прохорова Физическая энциклопедия . - М .: «Советская энциклопедия» , 1998. - Т. 2 . <

Отрывок, характеризующий Удельная теплоёмкость

– Сходит? – повторила Наташа.
– Я тебе про себя скажу. У меня был один cousin…
– Знаю – Кирилла Матвеич, да ведь он старик?
– Не всегда был старик. Но вот что, Наташа, я поговорю с Борей. Ему не надо так часто ездить…
– Отчего же не надо, коли ему хочется?
– Оттого, что я знаю, что это ничем не кончится.
– Почему вы знаете? Нет, мама, вы не говорите ему. Что за глупости! – говорила Наташа тоном человека, у которого хотят отнять его собственность.
– Ну не выйду замуж, так пускай ездит, коли ему весело и мне весело. – Наташа улыбаясь поглядела на мать.
– Не замуж, а так, – повторила она.
– Как же это, мой друг?
– Да так. Ну, очень нужно, что замуж не выйду, а… так.
– Так, так, – повторила графиня и, трясясь всем своим телом, засмеялась добрым, неожиданным старушечьим смехом.
– Полноте смеяться, перестаньте, – закричала Наташа, – всю кровать трясете. Ужасно вы на меня похожи, такая же хохотунья… Постойте… – Она схватила обе руки графини, поцеловала на одной кость мизинца – июнь, и продолжала целовать июль, август на другой руке. – Мама, а он очень влюблен? Как на ваши глаза? В вас были так влюблены? И очень мил, очень, очень мил! Только не совсем в моем вкусе – он узкий такой, как часы столовые… Вы не понимаете?…Узкий, знаете, серый, светлый…
– Что ты врешь! – сказала графиня.
Наташа продолжала:
– Неужели вы не понимаете? Николенька бы понял… Безухий – тот синий, темно синий с красным, и он четвероугольный.
– Ты и с ним кокетничаешь, – смеясь сказала графиня.
– Нет, он франмасон, я узнала. Он славный, темно синий с красным, как вам растолковать…
– Графинюшка, – послышался голос графа из за двери. – Ты не спишь? – Наташа вскочила босиком, захватила в руки туфли и убежала в свою комнату.
Она долго не могла заснуть. Она всё думала о том, что никто никак не может понять всего, что она понимает, и что в ней есть.
«Соня?» подумала она, глядя на спящую, свернувшуюся кошечку с ее огромной косой. «Нет, куда ей! Она добродетельная. Она влюбилась в Николеньку и больше ничего знать не хочет. Мама, и та не понимает. Это удивительно, как я умна и как… она мила», – продолжала она, говоря про себя в третьем лице и воображая, что это говорит про нее какой то очень умный, самый умный и самый хороший мужчина… «Всё, всё в ней есть, – продолжал этот мужчина, – умна необыкновенно, мила и потом хороша, необыкновенно хороша, ловка, – плавает, верхом ездит отлично, а голос! Можно сказать, удивительный голос!» Она пропела свою любимую музыкальную фразу из Херубиниевской оперы, бросилась на постель, засмеялась от радостной мысли, что она сейчас заснет, крикнула Дуняшу потушить свечку, и еще Дуняша не успела выйти из комнаты, как она уже перешла в другой, еще более счастливый мир сновидений, где всё было так же легко и прекрасно, как и в действительности, но только было еще лучше, потому что было по другому.

На другой день графиня, пригласив к себе Бориса, переговорила с ним, и с того дня он перестал бывать у Ростовых.

31 го декабря, накануне нового 1810 года, le reveillon [ночной ужин], был бал у Екатерининского вельможи. На бале должен был быть дипломатический корпус и государь.
На Английской набережной светился бесчисленными огнями иллюминации известный дом вельможи. У освещенного подъезда с красным сукном стояла полиция, и не одни жандармы, но полицеймейстер на подъезде и десятки офицеров полиции. Экипажи отъезжали, и всё подъезжали новые с красными лакеями и с лакеями в перьях на шляпах. Из карет выходили мужчины в мундирах, звездах и лентах; дамы в атласе и горностаях осторожно сходили по шумно откладываемым подножкам, и торопливо и беззвучно проходили по сукну подъезда.
Почти всякий раз, как подъезжал новый экипаж, в толпе пробегал шопот и снимались шапки.
– Государь?… Нет, министр… принц… посланник… Разве не видишь перья?… – говорилось из толпы. Один из толпы, одетый лучше других, казалось, знал всех, и называл по имени знатнейших вельмож того времени.
Уже одна треть гостей приехала на этот бал, а у Ростовых, долженствующих быть на этом бале, еще шли торопливые приготовления одевания.
Много было толков и приготовлений для этого бала в семействе Ростовых, много страхов, что приглашение не будет получено, платье не будет готово, и не устроится всё так, как было нужно.
Вместе с Ростовыми ехала на бал Марья Игнатьевна Перонская, приятельница и родственница графини, худая и желтая фрейлина старого двора, руководящая провинциальных Ростовых в высшем петербургском свете.
В 10 часов вечера Ростовы должны были заехать за фрейлиной к Таврическому саду; а между тем было уже без пяти минут десять, а еще барышни не были одеты.
Наташа ехала на первый большой бал в своей жизни. Она в этот день встала в 8 часов утра и целый день находилась в лихорадочной тревоге и деятельности. Все силы ее, с самого утра, были устремлены на то, чтобы они все: она, мама, Соня были одеты как нельзя лучше. Соня и графиня поручились вполне ей. На графине должно было быть масака бархатное платье, на них двух белые дымковые платья на розовых, шелковых чехлах с розанами в корсаже. Волоса должны были быть причесаны a la grecque [по гречески].
Все существенное уже было сделано: ноги, руки, шея, уши были уже особенно тщательно, по бальному, вымыты, надушены и напудрены; обуты уже были шелковые, ажурные чулки и белые атласные башмаки с бантиками; прически были почти окончены. Соня кончала одеваться, графиня тоже; но Наташа, хлопотавшая за всех, отстала. Она еще сидела перед зеркалом в накинутом на худенькие плечи пеньюаре. Соня, уже одетая, стояла посреди комнаты и, нажимая до боли маленьким пальцем, прикалывала последнюю визжавшую под булавкой ленту.

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .

На сегодняшнем уроке мы введем такое физическое понятие как удельнаятеплоемкость вещества. Узнаем, что она зависит от химических свойств вещества, а ее значение, которое можно найти в таблицах, различно для различных веществ. Затем выясним единицы измерения и формулу нахождения удельной теплоемкости, а также научимся анализировать тепловые свойства веществ по значению их удельной теплоемкости.

Калориметр (от лат. calor – тепло и metor – измерять) – прибор для измерения количества теплоты , выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «калориметр» был предложен А. Лавуазье и П. Лапласом.

Состоит калориметр из крышки, внутреннего и внешнего стакана. Очень важным в конструкции калориметра является то, что между меньшим и большим сосудами существует прослойка воздуха, которая обеспечивает из-за низкой теплопроводности плохую теплопередачу между содержимым и внешней средой. Такая конструкция позволяет рассматривать калориметр как своеобразный термос и практически избавиться от воздействий внешней среды на протекание процессов теплообмена внутри калориметра.

Предназначен калориметр для более точных, чем указано в таблице, измерений удельных теплоемкостей и других тепловых параметров тел.

Замечание. Важно отметить, что такое понятие, как количество теплоты, которым мы очень часто пользуемся, нельзя путать с внутренней энергией тела. Количество теплоты определяет именно изменение внутренней энергии, а не его конкретное значение.

Отметим, что удельная теплоемкость у разных веществ разная, что можно увидеть по таблице (рис. 3). Например, у золота удельная теплоемкость . Как мы уже указывали ранее, физический смысл такого значения удельной теплоемкости означает, что для нагревания 1 кг золота на 1 °С ему необходимо сообщить 130 Дж теплоты (рис. 5).

Рис. 5. Удельная теплоемкость золота

На следующем уроке мы обсудим вычисление значения количества теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «vactekh-holod.ru» ()

Домашнее задание

Количество энергии, которое необходимо сообщить 1 г какого либо вещества, чтобы повысить его температуру на 1°С. По определению, для того чтобы повысить температуру 1 г воды на 1°С, требуется 4,18 Дж. Экологический энциклопедический словарь.… … Экологический словарь

удельная теплоёмкость - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heatSH …

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ - физ. величина, измеряемая количеством теплоты, необходимым для нагревания 1 кг вещества на 1 К (см.). Единица удельной темплоёмкости в СИ (см.) на килограмм кельвин (Дж кг∙К)) … Большая политехническая энциклопедия

удельная теплоёмкость - savitoji šiluminė talpa statusas T sritis fizika atitikmenys: angl. heat capacity per unit mass; massic heat capacity; specific heat capacity vok. Eigenwärme, f; spezifische Wärme, f; spezifische Wärmekapazität, f rus. массовая теплоёмкость, f;… … Fizikos terminų žodynas

См. Теплоёмкость … Большая советская энциклопедия

удельная теплоёмкость - удельная теплота … Cловарь химических синонимов I

удельная теплоёмкость газа - — Тематики нефтегазовая промышленность EN gas specific heat … Справочник технического переводчика

удельная теплоёмкость нефти - — Тематики нефтегазовая промышленность EN oil specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном давлении - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant pressurecpconstant pressure specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном объёме - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant volumeconstant volume specific heatCv … Справочник технического переводчика

Книги

  • Физические и геологические основы изучения движения вод в глубоких горизонтах , Трушкин В.В.. В целом книга посвящена закону авторегулирования температуры воды с вмещающим телом, открытому автором в 1991 г. В начале книги проведен обзор состояния изученностипроблемы движения глубоких…