Кислоты и соли формулы. Неорганические кислоты

Сложные вещества, состоящие из атомов водорода и кислотного остатка, называются минеральными или неорганическими кислотами. Кислотным остатком являются оксиды и неметаллы, соединённые с водородом. Главное свойство кислот - способность образовывать соли.

Классификация

Основная формула минеральных кислот - H n Ac, где Ac - кислотный остаток. В зависимости от состава кислотного остатка выделяют два типа кислот:

  • кислородные, содержащие кислород;
  • бескислородные, состоящие только из водорода и неметалла.

Основной список неорганических кислот в соответствии с типом представлен в таблице.

Тип

Название

Формула

Кислородные

Азотистая

Дихромовая

Йодноватая

Кремниевые - метакремниевая и ортокремниевая

H 2 SiO 3 и H 4 SiO 4

Марганцовая

Марганцовистая

Метафосфорная

Мышьяковая

Ортофосфорная

Сернистая

Тиосерная

Тетратионовая

Угольная

Фосфористая

Фосфорноватистая

Хлорноватая

Хлористая

Хлорноватистая

Хромовая

Циановая

Бескислородные

Фтороводородная (плавиковая)

Хлороводородная (соляная)

Бромоводородная

Йодоводородная

Сероводородная

Циановодородная

Кроме того, в соответствии со свойствами кислоты классифицируются по следующим признакам:

  • растворимость : растворимые (HNO 3 , HCl) и нерастворимые (H 2 SiO 3);
  • летучесть : летучие (H 2 S, HCl) и нелетучие (H 2 SO 4 , H 3 PO 4);
  • степень диссоциации : сильные (HNO 3) и слабые (H 2 CO 3).

Рис. 1. Схема классификации кислот.

Для обозначения минеральных кислот используются традиционные и тривиальные названия. Традиционные названия соответствуют наименованию элемента, который образует кислоту с добавлением морфем -ная, -овая, а также -истая, -новатая, -новатистая для обозначения степени окисления.

Получение

Основные методы получения кислот представлены в таблице.

Свойства

Большинство кислот - жидкости с кислым вкусом. Вольфрамовая, хромовая, борная и несколько других кислот находятся в твёрдом состоянии при нормальных условиях. Некоторые кислоты (Н 2 СО 3 , H 2 SO 3 , HClO) существуют только в виде водного раствора и относятся к слабым кислотам.

Рис. 2. Хромовая кислота.

Кислоты - активные вещества, реагирующие:

  • с металлами:

    Ca + 2HCl = CaCl 2 + H 2 ;

  • с оксидами:

    CaO + 2HCl = CaCl 2 + H 2 O;

  • с основанием:

    H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O;

  • с солями:

    Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O.

Все реакции сопровождаются образованием солей.

Возможна качественная реакция с изменением цвета индикатора:

  • лакмус окрашивается в красный;
  • метил оранж - в розовый;
  • фенолфталеин не меняется.

Рис. 3. Цвета индикаторов при взаимодействии кислоты.

Химические свойства минеральных кислот определяются способностью диссоциироваться в воде с образованием катионов водорода и анионов водородных остатков. Кислоты, реагирующие с водой необратимо (диссоциируются полностью) называются сильными. К ним относятся хлорная, азотная, серная и хлороводородная.

Что мы узнали?

Неорганические кислоты образованы водородом и кислотным остатком, которым являются атомы неметалла или оксид. В зависимости от природы кислотного остатка кислоты классифицируются на бескислородные и кислородсодержащие. Все кислоты имеют кислый вкус и способны диссоциироваться в водной среде (распадаться на катионы и анионы). Кислоты получают из простых веществ, оксидов, солей. При взаимодействии с металлами, оксидами, основаниями, солями кислоты образуют соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 120.

Кислоты можно классифицировать исходя из разных критериев:

1) Наличие атомов кислорода в кислоте

2) Основность кислоты

Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H + , а также замещаться на атомы металла:

4) Растворимость

5) Устойчивость

7) Окисляющие свойства

Химические свойства кислот

1. Способность к диссоциации

Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

либо в таком виде: HCl = H + + Cl —

либо в таком: HCl → H + + Cl —

По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

CH 3 COOH CH 3 COO — + H +

Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H + :

H 3 PO 4 H + + H 2 PO 4 —

H 2 PO 4 — H + + HPO 4 2-

HPO 4 2- H + + PO 4 3-

Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H 3 PO 4 диссоциируют лучше (в большей степени), чем ионы H 2 PO 4 — , которые, в свою очередь, диссоциируют лучше, чем ионы HPO 4 2- . Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H + .

Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

H 2 SO 4 2H + + SO 4 2-

2. Взаимодействие кислот с металлами

Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H 2 SO 4(конц.) и HNO 3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

H 2 SO 4(разб.) + Zn ZnSO 4 + H 2

2HCl + Fe FeCl 2 + H 2

Что касается кислот-сильных окислителей, т.е. H 2 SO 4 (конц.) и HNO 3 , то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

3. Взаимодействие кислот с основными и амфотерными оксидами

Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

H 2 SO 4 + ZnO ZnSO 4 + H 2 O

6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O

H 2 SiO 3 + FeO ≠

4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

HCl + NaOH H 2 O + NaCl

3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O

5. Взаимодействие кислот с солями

Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3

CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O

HCOONa + HCl HCOOH + NaCl

6. Специфические окислительные свойства азотной и концентрированной серной кислот

Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO 3 и концентрированной H 2 SO 4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:

7. Восстановительные свойства бескислородных кислот

Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O

18HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2

14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O

Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

6HI + Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O

2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl

Высокой восстановительной активностью обладает также и сероводородная кислота H 2 S. Ее может окислить даже такой окислитель, как диоксид серы.

Названия некоторых неорганических кислот и солей

Формулы кислот Названия кислот Названия соответствующих солей
HClO 4 хлорная перхлораты
HClO 3 хлорноватая хлораты
HClO 2 хлористая хлориты
HClO хлорноватистая гипохлориты
H 5 IO 6 иодная периодаты
HIO 3 иодноватая иодаты
H 2 SO 4 серная сульфаты
H 2 SO 3 сернистая сульфиты
H 2 S 2 O 3 тиосерная тиосульфаты
H 2 S 4 O 6 тетратионовая тетратионаты
H NO 3 азотная нитраты
H NO 2 азотистая нитриты
H 3 PO 4 ортофосфорная ортофосфаты
H PO 3 метафосфорная метафосфаты
H 3 PO 3 фосфористая фосфиты
H 3 PO 2 фосфорноватистая гипофосфиты
H 2 CO 3 угольная карбонаты
H 2 SiO 3 кремниевая силикаты
HMnO 4 марганцовая перманганаты
H 2 MnO 4 марганцовистая манганаты
H 2 CrO 4 хромовая хроматы
H 2 Cr 2 O 7 дихромовая дихроматы
HF фтороводородная (плавиковая) фториды
HCl хлороводородная (соляная) хлориды
HBr бромоводородная бромиды
HI иодоводородная иодиды
H 2 S сероводородная сульфиды
HCN циановодородная цианиды
HOCN циановая цианаты

Напомню кратко на конкретных примерах, как следует правильно называть соли.


Пример 1 . Соль K 2 SO 4 образована остатком серной кислоты (SO 4) и металлом К. Соли серной кислоты называются сульфатами. K 2 SO 4 - сульфат калия.

Пример 2 . FeCl 3 - в состав соли входит железо и остаток соляной кислоты (Cl). Название соли: хлорид железа (III). Обратите внимание: в данном случае мы не только должны назвать металл, но и указать его валентность (III). В прошлом примере в этом не было необходимости, т. к. валентность натрия постоянна.

Важно: в названии соли следует указывать валентность металла только в том случае, если данный металл имеет переменную валентность!

Пример 3 . Ba(ClO) 2 - в состав соли входит барий и остаток хлорноватистой кислоты (ClO). Название соли: гипохлорит бария. Валентность металла Ва во всех его соединениях равна двум, указывать ее не нужно.

Пример 4 . (NH 4) 2 Cr 2 O 7 . Группа NH 4 называется аммоний, валентность этой группы постоянна. Название соли: дихромат (бихромат) аммония.

В приведенных выше примерах нам встретились только т. н. средние или нормальные соли. Кислые, основные, двойные и комплексные соли, соли органических кислот здесь обсуждаться не будут.

Бескислородные: Основность Название соли
HCl - хлористоводородная (соляная) одноосновная хлорид
HBr - бромистоводородная одноосновная бромид
HI - йодистоводородная одноосновная йодид
HF - фтористоводородная (плавиковая) одноосновная фторид
H 2 S - сероводородная двухосновная сульфид
Кислородсодержащие:
HNO 3 – азотная одноосновная нитрат
H 2 SO 3 - сернистая двухосновная сульфит
H 2 SO 4 – серная двухосновная сульфат
H 2 CO 3 - угольная двухосновная карбонат
H 2 SiO 3 - кремниевая двухосновная силикат
H 3 PO 4 - ортофосфорная трёхосновная ортофосфат

Соли – сложные вещества, которые состоят из атомов металла и кислотных остатков. Это наиболее многочисленный класс неорганических соединений.

Классификация. По составу и свойствам: средние, кислые, основные, двойные, смешанные, комплексные

Средние соли являются продуктами полного замещения атомов водорода многоосновной кислоты на атомы металла.

При диссоциации дают только катионы металла (или NH 4 +). Например:

Na 2 SO 4 ® 2Na + +SO

CaCl 2 ® Ca 2+ + 2Cl -

Кислые соли являются продуктами неполного замещения атомов водорода многоосновной кислоты на атомы металла.

При диссоциации дают катионы металла (NH 4 +), ионы водорода и анионы кислотного остатка, например:

NaHCO 3 ® Na + + HCO « H + +CO .

Основные соли являются продуктами неполного замещения групп OH - соответствующего основания на кислотные остатки.

При диссоциации дают катионы металла, анионы гидроксила и кислотного остатка.

Zn(OH)Cl ® + + Cl - « Zn 2+ + OH - + Cl - .

Двойные соли содержат два катиона металла и при диссоциации дают два катиона и один анион.

KAl(SO 4) 2 ® K + + Al 3+ + 2SO

Комплексны соли содержат комплексные катионы или анионы.

Br ® + + Br - « Ag + +2 NH 3 + Br -

Na ® Na + + - « Na + + Ag + + 2 CN -

Генетическая связь между различными классами соединений

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оборудование и посуда : штатив с пробирками, промывалка, спиртовка.

Реактивы и материалы : красный фосфор,оксид цинка, гранулы Zn, порошок гашеной извести Ca(OH) 2 , 1 моль/дм 3 растворы NaOH, ZnSO 4 , СuSO 4 , AlCl 3 , FeCl 3 , HСl, H 2 SO 4 , универсальная индикаторная бумага, раствор фенолфталеина, метилоранжа, дистиллированная вода.

Порядок выполнения работы

1. Оксид цинка насыпать в две пробирки; в одну добавить раствор кислоты (HCl или H 2 SO 4) в другую раствор щелочи (NaOH или KOH) и слегка нагреть на спиртовке.

Наблюдения: Происходит ли растворение оксида цинка в растворе кислоты и щелочи?

Написать уравнения

Выводы: 1.К какому типу оксидов относится ZnO?

2. Какими свойствами обладают амфотерные оксиды?

Получение и свойства гидроксидов

2.1. В раствор щелочи (NaOH или KOH) опустить кончик универсальной индикаторной полоски. Сравнить полученный цвет индикаторной полоски со стандартной цветовой шкалой.

Наблюдения: Записать значение рН раствора.

2.2. Взять четыре пробирки, налить в первую 1 мл раствора ZnSO 4 , во вторую - СuSO 4 , в третью - AlCl 3 , в четвертую - FeCl 3 . В каждую пробирку добавить 1мл раствора NaOH. Написать наблюдения и уравнения происходящих реакций.

Наблюдения: Происходит ли выпадение осадка при добавлении щелочи к раствору соли? Укажите цвет осадка.

Написать уравнения происходящих реакций (в молекулярном и ионном виде).

Выводы: Какими способами могут быть получены гидроксиды металлов?

2.3. Половину осадков, полученных в опыте 2.2., перенести в другие пробирки. На одну часть осадка подействовать раствором H 2 SO 4 на другую – раствором NaOH.

Наблюдения: Происходит ли растворение осадков при добавлении щелочи и кислоты к осадкам?

Написать уравнения происходящих реакций (в молекулярном и ионном виде).

Выводы: 1.К какому типу гидроксидов относятся Zn(OH) 2 , Al(OH) 3 , Сu(OH) 2 , Fe(OH) 3 ?

2. Какими свойствами обладают амфотерные гидроксиды?

Получение солей.

3.1. В пробирку налить 2 мл раствора CuSO 4 и опустить в этот раствор очищенный гвоздь. (Реакция идет медленно, изменения на поверхности гвоздя появляются через 5-10 мин).

Наблюдения: Происходят ли какие-то изменения с поверхностью гвоздя? Что осаждается?

Написать уравнение окислительно-восстановительной реакции.

Выводы: Принимая во внимание ряд напряжений металлов, укажите способ получения солей.

3.2. В пробирку поместить одну гранулу цинка и прилить раствор HCl.

Наблюдения: Происходят ли выделение газа?

Написать уравнение

Выводы: Объясните данный способ получения солей?

3.3. В пробирку насыпать немного порошка гашеной извести Ca(OH) 2 и прилить раствор HСl.

Наблюдения: Происходит ли выделение газа?

Написать уравнение происходящей реакции (в молекулярном и ионном виде).

Вывод: 1. К какому типу относится реакция взаимодействия гидроксида и кислоты?

2.Какие вещества являются продуктами этой реакции?

3.5. В две пробирки налейте по 1 мл растворов солей: в первую – сульфата меди, во вторую – хлорида кобальта. Добавьте в обе пробирки по каплям раствор гидроксида натрия до образования осадков. Затем добавьте в обе пробирки избыток щелочи.

Наблюдения: Укажите изменения цвета осадков в реакциях.

Написать уравнение происходящей реакции (в молекулярном и ионном виде).

Вывод: 1. В результате каких реакций образуются основные соли?

2. Как можно перевести основные соли в средние?

Контрольные задания:

1. Из перечисленных веществ выписать формулы солей, оснований, кислот: Ca(OH) 2, Ca(NO 3) 2, FeCl 3, HCl, H 2 O, ZnS, H 2 SO 4, CuSO 4, KOH
Zn(OH) 2, NH 3, Na 2 CO 3, K 3 PO 4 .

2. Укажите формулы оксидов, соответствующие перечисленным веществам H 2 SO 4 , H 3 AsO 3 , Bi(OH) 3 , H 2 MnO 4 , Sn(OH) 2 , KOH, H 3 PO 4 , H 2 SiO 3 , Ge(OH) 4 .

3. Какие гидроксиды относятся к амфотерным? Составьте уравнения реакций, характеризующих амфотерность гидроксида алюминия и гидроксида цинка.

4. Какие из указанных соединений будут попарно взаимодействовать: P 2 O 5 , NaOH, ZnO, AgNO 3 , Na 2 CO 3 , Cr(OH) 3 , H 2 SO 4 . Составьте уравнения возможных реакций.


Лабораторная работа № 2 (4 ч.)

Тема: Качественный анализ катионов и анионов

Цель: освоить технику проведения качественных и групповых реак­ций на катионы и анионы.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Основной задачей качественного анализа является установление химического состава веществ, находящихся в разнообразных объектах (биологических материалах, лекарственных препаратах, продуктах питания, объектах окружающей среды). В настоящей работе рассматривается качественный анализ неорганических веществ, являющихся электролитами, т. е. по сути качественный анализ ионов. Из всей совокупности встречающихся ионов выбраны наиболее важные в медико-биологическом отношении: (Fе 3+ , Fе 2+ , Zn 2+ , Са 2+ , Na + , К + , Мg 2+ , Сl - , РО , СО и др.). Многие из этих ионов входят в состав различных лекарственных препаратов и продуктов питания.

В качественном анализе используются не все возможные реакции, а только те, которые сопровождаются отчетливым аналитическим эффектом. Наиболее часто встречающиеся аналитические эффекты: появление новой окраски, выделение газа, образование осадка.

Существуют два принципиально разных подхода к качественному анализу: дробный и систематический . В систематическом анализе обязательно используют групповые реагенты, позволяющие разделить присутствующие ионы на отдельные группы, а в некоторых случаях и на подгруппы. Для этого часть ионов переводят в состав нерастворимых соединений, а часть ионов оставляют в растворе. После отделения осадка от раствора анализ их проводят раздельно.

Например, в растворе имеются ионы А1 3+ , Fе 3+ и Ni 2+ . Если на этот раствор подействовать избытком щелочи, выпадает осадок Fе(ОН) 3 и Ni(ОН) 2 , а в растворе остаются ионы [А1(ОН) 4 ] - . Осадок, содержащий гидроксиды железа и никеля, при обработке аммиаком частично растворится за счет перехода в раствор 2+ . Таким образом, с помощью двух реагентов - щелочи и аммиака были получены два раствора: в одном содержались ионы [А1(ОН) 4 ] - , в другом - ионы 2+ и осадок Fе(ОН) 3 . С помощью характерных реакций затем доказывается наличие тех или иных ионов в растворах и в осадке, который предварительно нужно растворить.

Систематический анализ используют в основном для обнаружения ионов в сложных многокомпонентных смесях. Он очень трудоемок, од­нако преимущество его заключается в легкой формализации всех дейст­вий, укладывающихся в четкую схему (методику).

Для проведения дробного анализа используют только характерные реакции. Очевидно, что присутствие других ионов может значительно искажать результаты реакции (наложение окрасок друг на друга, выпаде­ние нежелательных осадков и т. д.). Во избежание этого в дробном ана­лизе используют в основном высокоспецифические реакции, дающие аналитический эффект с небольшим числом ионов. Для успешного проведения реакций очень важно поддерживать определенные усло­вия, в частности, рН. Очень часто в дробном анализе приходится прибе­гать к маскировке, т. е. к переводу ионов в соединения, не способные да­вать аналитический эффект с выбранным реактивом. Например, для об­наружения иона никеля используется диметилглиоксим. Сходный анали­тический эффект с этим реагентом дает и ион Fе 2+ . Для обнаружения Ni 2+ ион Fе 2+ переводят в прочный фторидный комплекс 4- или же окис­ляют до Fе 3+ , например, пероксидом водорода.

Дробный анализ используют для обнаружения ионов в более про­стых смесях. Время анализа значительно сокращается, однако при этом от экспериментатора требуется более глубокое знание закономерностей протекания химических реакций, так как учесть в одной конкретной ме­тодике все возможные случаи взаимного влияния ионов на характер на­блюдаемых аналитических эффектов достаточно сложно.

В аналитической практике часто применяют так называемый дроб­но-систематический метод. При таком подходе используется минималь­ное число групповых реактивов, что позволяет наметить тактику анализа в общих чертах, который затем осуществляется дробным методом.

По технике проведения аналитических реакций различают реакции: осадочные; микрокристаллоскопические; сопровождающиеся выделени­ем газообразных продуктов; проводимые на бумаге; экстракционные; цветные в растворах; окрашивания пламени.

При проведении осадочных реакций обязательно отмечают цвет и характер осадка (кристаллический, аморфный), при необходимости про­водят дополнительные испытания: проверяют осадок на растворимость в сильных и слабых кислотах, щелочах и аммиаке, избытке реактива. При проведении реакций, сопровождающихся выделением газа, отмечают его цвет и запах. В некоторых случаях проводят дополнительные испытания.

Например, если предполагают, что выделяющийся газ – оксид углерода (IV), его пропускают через избыток известковой воды.

В дробном и систематическом анализах широко используются реакции, в ходе которых появляется новая окраска, чаще всего это реакции комплексообразования или окислительно-восстановительные реакции.

В отдельных случаях такие реакции удобно проводить на бумаге (капельные реакции). Реактивы, не подвергающиеся разложению в обычных условиях, наносят на бумагу заранее. Так, для обнаружения сероводорода или сульфид-ионов применяют бумагу, пропитанную нитратом свинца [происходит почернение за счет образования сульфида свинца(II)]. Многие окислители обнаруживают с помощью йодкрахмальной бумаги, т.е. бумаги, пропитанной растворами иодида калия и крахмала. В большинстве же случаев необходимые реактивы наносят на бумагу во время проведения реакции, например, ализарин на ион А1 3+ , купрон на ион Сu 2+ и др. Для усиления окраски иногда применяют экс­тракцию в органический растворитель. Для предварительных испытаний используют реакции окрашивания пламени.

Кислоты - сложные вещества, состоящие из одного или нескольких атомов водорода, способных замещаться на атома металлов, и кислотных остатков.


Классификация кислот

1. По числу атомов водорода: число атомов водорода ( n ) определяет основность кислот:

n = 1 одноосновная

n = 2 двухосновная

n = 3 трехосновная

2. По составу:

а) Таблица кислород содержащих кислот, кислотных остатков и соответствующих кислотных оксидов:

Кислота (Н n А)

Кислотный остаток (А)

Соответствующий кислотный оксид

H 2 SO 4 серная

SO 4 (II) сульфат

SO 3 оксид серы (VI )

HNO 3 азотная

NO 3 (I) нитрат

N 2 O 5 оксид азота (V )

HMnO 4 марганцевая

MnO 4 (I) перманганат

Mn 2 O 7 оксид марганца ( VII )

H 2 SO 3 сернистая

SO 3 (II) сульфит

SO 2 оксид серы (IV )

H 3 PO 4 ортофосфорная

PO 4 (III) ортофосфат

P 2 O 5 оксид фосфора (V )

HNO 2 азотистая

NO 2 (I) нитрит

N 2 O 3 оксид азота (III )

H 2 CO 3 угольная

CO 3 (II) карбонат

CO 2 оксид углерода ( IV )

H 2 SiO 3 кремниевая

SiO 3 (II) силикат

SiO 2 оксид кремния (IV)

НСlO хлорноватистая

СlO (I) гипохлорит

С l 2 O оксид хлора (I)

НСlO 2 хлористая

СlO 2 (I) хлорит

С l 2 O 3 оксид хлора (III)

НСlO 3 хлорноватая

СlO 3 (I) хлорат

С l 2 O 5 оксид хлора (V)

НСlO 4 хлорная

СlO 4 (I) перхлорат

С l 2 O 7 оксид хлора (VII)

б) Таблица бескислородных кислот

Кислота (Н n А)

Кислотный остаток (А)

HCl соляная, хлороводородная

Cl (I ) хлорид

H 2 S сероводородная

S (II ) сульфид

HBr бромоводородная

Br (I ) бромид

HI йодоводородная

I (I ) йодид

HF фтороводородная,плавиковая

F (I ) фторид

Физические свойства кислот

Многие кислоты, например серная, азотная, соляная – это бесцветные жидкости. известны также твёрдые кислоты: ортофосфорная, метафосфорная HPO 3 , борная H 3 BO 3 . Почти все кислоты растворимы в воде. Пример нерастворимой кислоты – кремниевая H 2 SiO 3 . Растворы кислот имеют кислый вкус. Так, например, многим плодам придают кислый вкус содержащиеся в них кислоты. Отсюда названия кислот: лимонная, яблочная и т.д.

Способы получения кислот

бескислородные

кислородсодержащие

HCl, HBr, HI, HF, H 2 S

HNO 3 , H 2 SO 4 и другие

ПОЛУЧЕНИЕ

1. Прямое взаимодействие неметаллов

H 2 + Cl 2 = 2 HCl

1. Кислотный оксид + вода = кислота

SO 3 + H 2 O = H 2 SO 4

2. Реакция обмена между солью и менее летучей кислотой

2 NaCl (тв .) + H 2 SO 4 (конц .) = Na 2 SO 4 + 2HCl ­

Химические свойства кислот

1. Изменяют окраску индикаторов

Название индикатора

Нейтральная среда

Кислая среда

Лакмус

Фиолетовый

Красный

Фенолфталеин

Бесцветный

Бесцветный

Метилоранж

Оранжевый

Красный

Универсальная индикаторная бумага

Оранжевая

Красная

2.Реагируют с металлами в ряду активности до H 2

(искл. HNO 3 –азотная кислота)

Видео "Взаимодействие кислот с металлами"

Ме + КИСЛОТА =СОЛЬ + H 2 (р. замещения)


Zn + 2 HCl = ZnCl 2 + H 2

3. С основными (амфотерными) оксидами – оксидами металлов

Видео "Взаимодействие оксидов металлов с кислотами"

Ме х О у + КИСЛОТА= СОЛЬ + Н 2 О (р. обмена)

4. Реагируют с основаниями реакция нейтрализации

КИСЛОТА + ОСНОВАНИЕ= СОЛЬ+ H 2 O (р. обмена)

H 3 PO 4 + 3 NaOH = Na 3 PO 4 + 3 H 2 O

5. Реагируют с солями слабых, летучих кислот - если образуется кислота, выпадающая в осадок или выделяется газ:

2 NaCl (тв .) + H 2 SO 4 (конц .) = Na 2 SO 4 + 2HCl ­ ( р . обмена )

Видео "Взаимодействие кислот с солями"

6. Разложение кислородсодержащих кислот при нагревании

(искл. H 2 SO 4 ; H 3 PO 4 )

КИСЛОТА = КИСЛОТНЫЙ ОКСИД + ВОДА (р. разложения)

Запомните! Неустойчивые кислоты (угольная и сернистая) – разлагаются на газ и воду :

H 2 CO 3 ↔ H 2 O + CO 2

H 2 SO 3 ↔ H 2 O + SO 2

Сероводородная кислота в продуктах выделяется в виде газа:

СаS + 2HCl = H 2 S + Ca Cl 2

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Распределите химические формулы кислот в таблицу. Дайте им названия:

LiOH , Mn 2 O 7 , CaO , Na 3 PO 4 , H 2 S , MnO , Fe (OH ) 3 , Cr 2 O 3 ,HI , HClO 4 , HBr , CaCl 2 , Na 2 O , HCl , H 2 SO 4 , HNO 3 , HMnO 4 , Ca (OH ) 2 , SiO 2 , Кислоты

Бес-кисло-

родные

Кислород- содержащие

растворимые

нераст-воримые

одно-

основные

двух-основные

трёх-основные

№2. Составьте уравнения реакций:

Ca + HCl

Na + H 2 SO 4

Al + H 2 S

Ca + H 3 PO 4
Назовите продукты реакции.

№3. Составьте уравнения реакций, назовите продукты:

Na 2 O + H 2 CO 3

ZnO + HCl

CaO + HNO 3

Fe 2 O 3 + H 2 SO 4

№4. Составьте уравнения реакций взаимодействия кислот с основаниями и солями:

KOH + HNO 3

NaOH + H 2 SO 3

Ca(OH) 2 + H 2 S

Al(OH) 3 + HF

HCl + Na 2 SiO 3

H 2 SO 4 + K 2 CO 3

HNO 3 + CaCO 3

Назовите продукты реакции.

ТРЕНАЖЁРЫ

Тренажёр №1. "Формулы и названия кислот"

Тренажёр №2. " Установление соответствия: формула кислоты - формула оксида"

Техника безопасности - Оказание первой помощи при попадании кислот на кожу

Техника безопасности -