Можно ли делить квадратные корни. Квадратный корень

Приветствую, котаны! В прошлый раз мы подробно разобрали, что такое корни (если не помните, рекомендую почитать). Главный вывод того урока: существует лишь одно универсальное определение корней, которое вам и нужно знать. Остальное — брехня и пустая трата времени.

Сегодня мы идём дальше. Будем учиться умножать корни, изучим некоторые проблемы, связанные с умножением (если эти проблемы не решить, то на экзамене они могут стать фатальными) и как следует потренируемся. Поэтому запасайтесь попкорном, устраивайтесь поудобнее — и мы начинаем.:)

Вы ведь тоже ещё не вкурили?

Урок получился довольно большим, поэтому я разделил его на две части:

  1. Сначала мы разберём правила умножения. Кэп как бы намекает: это когда есть два корня, между ними стоит знак «умножить» — и мы хотим что-то с этим сделать.
  2. Затем разберём обратную ситуацию: есть один большой корень, а нам приспичило представить его в виде произведения двух корней попроще. С какого перепугу это бывает нужно — вопрос отдельный. Мы разберём лишь алгоритм.

Тем, кому не терпится сразу перейти ко второй части — милости прошу. С остальными начнём по порядку.

Основное правило умножения

Начнём с самого простого — классических квадратных корней. Тех самых, которые обозначаются $\sqrt{a}$ и $\sqrt{b}$. Для них всё вообще очевидно:

Правило умножения. Чтобы умножить один квадратный корень на другой, нужно просто перемножить их подкоренные выражения, а результат записать под общим радикалом:

\[\sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b}\]

Никаких дополнительных ограничений на числа, стоящие справа или слева, не накладывается: если корни-множители существуют, то и произведение тоже существует.

Примеры. Рассмотрим сразу четыре примера с числами:

\[\begin{align} & \sqrt{25}\cdot \sqrt{4}=\sqrt{25\cdot 4}=\sqrt{100}=10; \\ & \sqrt{32}\cdot \sqrt{2}=\sqrt{32\cdot 2}=\sqrt{64}=8; \\ & \sqrt{54}\cdot \sqrt{6}=\sqrt{54\cdot 6}=\sqrt{324}=18; \\ & \sqrt{\frac{3}{17}}\cdot \sqrt{\frac{17}{27}}=\sqrt{\frac{3}{17}\cdot \frac{17}{27}}=\sqrt{\frac{1}{9}}=\frac{1}{3}. \\ \end{align}\]

Как видите, основной смысл этого правила — упрощение иррациональных выражений. И если в первом примере мы бы и сами извлекли корни из 25 и 4 без всяких новых правил, то дальше начинается жесть: $\sqrt{32}$ и $\sqrt{2}$ сами по себе не считаются, но их произведение оказывается точным квадратом, поэтому корень из него равен рациональному числу .

Отдельно хотел бы отметить последнюю строчку. Там оба подкоренных выражения представляют собой дроби. Благодаря произведению многие множители сокращаются, а всё выражение превращается в адекватное число.

Конечно, не всегда всё будет так красиво. Иногда под корнями будет стоять полная лажа — непонятно, что с ней делать и как преобразовывать после умножения. Чуть позже, когда начнёте изучать иррациональные уравнения и неравенства, там вообще будут всякие переменные и функции. И очень часто составители задач как раз и рассчитывают на то, что вы обнаружите какие-то сокращающиеся слагаемые или множители, после чего задача многократно упростится.

Кроме того, совсем необязательно перемножать именно два корня. Можно умножить сразу три, четыре — да хоть десять! Правило от этого не поменяется. Взгляните:

\[\begin{align} & \sqrt{2}\cdot \sqrt{3}\cdot \sqrt{6}=\sqrt{2\cdot 3\cdot 6}=\sqrt{36}=6; \\ & \sqrt{5}\cdot \sqrt{2}\cdot \sqrt{0,001}=\sqrt{5\cdot 2\cdot 0,001}= \\ & =\sqrt{10\cdot \frac{1}{1000}}=\sqrt{\frac{1}{100}}=\frac{1}{10}. \\ \end{align}\]

И опять небольшое замечание по второму примеру. Как видите, в третьем множителе под корнем стоит десятичная дробь — в процессе вычислений мы заменяем её обычной, после чего всё легко сокращается. Так вот: очень рекомендую избавляться от десятичных дробей в любых иррациональных выражениях (т.е. содержащих хотя бы один значок радикала). В будущем это сэкономит вам кучу времени и нервов.

Но это было лирическое отступление. Теперь рассмотрим более общий случай — когда в показателе корня стоит произвольное число $n$, а не только «классическая» двойка.

Случай произвольного показателя

Итак, с квадратными корнями разобрались. А что делать с кубическими? Или вообще с корнями произвольной степени $n$? Да всё то же самое. Правило остаётся прежним:

Чтобы перемножить два корня степени $n$, достаточно перемножить их подкоренные выражения, после чего результат записать под одним радикалом.

В общем, ничего сложного. Разве что объём вычислений может оказаться больше. Разберём парочку примеров:

Примеры. Вычислить произведения:

\[\begin{align} & \sqrt{20}\cdot \sqrt{\frac{125}{4}}=\sqrt{20\cdot \frac{125}{4}}=\sqrt{625}=5; \\ & \sqrt{\frac{16}{625}}\cdot \sqrt{0,16}=\sqrt{\frac{16}{625}\cdot \frac{16}{100}}=\sqrt{\frac{64}{{{25}^{2}}\cdot 25}}= \\ & =\sqrt{\frac{{{4}^{3}}}{{{25}^{3}}}}=\sqrt{{{\left(\frac{4}{25} \right)}^{3}}}=\frac{4}{25}. \\ \end{align}\]

И вновь внимание второе выражение. Мы перемножаем кубические корни, избавляемся от десятичной дроби и в итоге получаем в знаменателе произведение чисел 625 и 25. Это довольно большое число — лично я с ходу не посчитаю, чему оно равно.

Поэтому мы просто выделили точный куб в числителе и знаменателе, а затем воспользовались одним из ключевых свойств (или, если угодно — определением) корня $n$-й степени:

\[\begin{align} & \sqrt{{{a}^{2n+1}}}=a; \\ & \sqrt{{{a}^{2n}}}=\left| a \right|. \\ \end{align}\]

Подобные «махинации» могут здорово сэкономить вам время на экзамене или контрольной работе, поэтому запомните:

Не спешите перемножать числа в подкоренном выражении. Сначала проверьте: вдруг там «зашифрована» точная степень какого-либо выражения?

При всей очевидности этого замечания должен признать, что большинство неподготовленных учеников в упор не видят точные степени. Вместо этого они перемножают всё напролом, а затем удивляются: почему это получились такие зверские числа?:)

Впрочем, всё это детский лепет по сравнению с тем, что мы изучим сейчас.

Умножение корней с разными показателями

Ну хорошо, теперь мы умеем перемножать корни с одинаковыми показателями. А что, если показатели разные? Скажем, как умножить обычный $\sqrt{2}$ на какую-нибудь хрень типа $\sqrt{23}$? Можно ли вообще это делать?

Да конечно можно. Всё делается вот по этой формуле:

Правило умножения корней. Чтобы умножить $\sqrt[n]{a}$ на $\sqrt[p]{b}$, достаточно выполнить вот такое преобразование:

\[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\]

Однако эта формула работает только при условии, что подкоренные выражения неотрицательны . Это очень важное замечание, к которому мы вернёмся чуть позже.

А пока рассмотрим парочку примеров:

\[\begin{align} & \sqrt{3}\cdot \sqrt{2}=\sqrt{{{3}^{4}}\cdot {{2}^{3}}}=\sqrt{81\cdot 8}=\sqrt{648}; \\ & \sqrt{2}\cdot \sqrt{7}=\sqrt{{{2}^{5}}\cdot {{7}^{2}}}=\sqrt{32\cdot 49}=\sqrt{1568}; \\ & \sqrt{5}\cdot \sqrt{3}=\sqrt{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt{625\cdot 9}=\sqrt{5625}. \\ \end{align}\]

Как видите, ничего сложного. Теперь давайте разберёмся, откуда взялось требование неотрицательности, и что будет, если мы его нарушим.:)


Умножать корни несложно

Почему подкоренные выражения должны быть неотрицательными?

Конечно, можно уподобиться школьным учителям и с умным видом процитировать учебник:

Требование неотрицательности связано с разными определениями корней чётной и нечётной степени (соответственно, области определения у них тоже разные).

Ну что, стало понятнее? Лично я, когда читал этот бред в 8-м классе, понял для себя примерно следующее: «Требование неотрицательности связано с *#&^@(*#@^#)~%» — короче, я нихрена в тот раз не понял.:)

Поэтому сейчас объясню всё по-нормальному.

Сначала выясним, откуда вообще берётся формула умножения, приведённая выше. Для этого напомню одно важное свойство корня:

\[\sqrt[n]{a}=\sqrt{{{a}^{k}}}\]

Другими словами, мы можем спокойно возводить подкоренное выражение в любую натуральную степень $k$ — при этом показатель корня придётся умножить на эту же степень. Следовательно, мы легко сведём любые корни к общему показателю, после чего перемножим. Отсюда и берётся формула умножения:

\[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}}\cdot \sqrt{{{b}^{n}}}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\]

Но есть одна проблема, которая резко ограничивает применение всех этих формул. Рассмотрим вот такое число:

Согласно только что приведённой формуле мы можем добавить любую степень. Попробуем добавить $k=2$:

\[\sqrt{-5}=\sqrt{{{\left(-5 \right)}^{2}}}=\sqrt{{{5}^{2}}}\]

Минус мы убрали как раз потому, что квадрат сжигает минус (как и любая другая чётная степень). А теперь выполним обратное преобразование: «сократим» двойку в показателе и степени. Ведь любое равенство можно читать как слева-направо, так и справа-налево:

\[\begin{align} & \sqrt[n]{a}=\sqrt{{{a}^{k}}}\Rightarrow \sqrt{{{a}^{k}}}=\sqrt[n]{a}; \\ & \sqrt{{{a}^{k}}}=\sqrt[n]{a}\Rightarrow \sqrt{{{5}^{2}}}=\sqrt{{{5}^{2}}}=\sqrt{5}. \\ \end{align}\]

Но тогда получается какая-то хрень:

\[\sqrt{-5}=\sqrt{5}\]

Этого не может быть, потому что $\sqrt{-5} \lt 0$, а $\sqrt{5} \gt 0$. Значит, для чётных степеней и отрицательных чисел наша формула уже не работает. После чего у нас есть два варианта:

  1. Убиться об стену констатировать, что математика — это дурацкая наука, где «есть какие-то правила, но это неточно»;
  2. Ввести дополнительные ограничения, при которых формула станет рабочей на 100%.

В первом варианте нам придётся постоянно вылавливать «неработающие» случаи — это трудно, долго и вообще фу. Поэтому математики предпочли второй вариант.:)

Но не переживайте! На практике это ограничение никак не влияет на вычисления, потому что все описанные проблемы касаются лишь корней нечётной степени, а из них можно выносить минусы.

Поэтому сформулируем ещё одно правило, которое распространяется вообще на все действия с корнями:

Прежде чем перемножать корни, сделайте так, чтобы подкоренные выражения были неотрицательны.

Пример. В числе $\sqrt{-5}$ можно вынести минус из-под знака корня — тогда всё будет норм:

\[\begin{align} & \sqrt{-5}=-\sqrt{5} \lt 0\Rightarrow \\ & \sqrt{-5}=-\sqrt{{{5}^{2}}}=-\sqrt{25}=-\sqrt{{{5}^{2}}}=-\sqrt{5} \lt 0 \\ \end{align}\]

Чувствуете разницу? Если оставить минус под корнем, то при возведении подкоренного выражения в квадрат он исчезнет, и начнётся хрень. А если сначала вынести минус, то можно хоть до посинения возводить/убирать квадрат — число останется отрицательным.:)

Таким образом, самый правильный и самый надёжный способ умножения корней следующий:

  1. Убрать все минусы из-под радикалов. Минусы бывают только в корнях нечётной кратности — их можно поставить перед корнем и при необходимости сократить (например, если этих минусов окажется два).
  2. Выполнить умножение согласно правилам, рассмотренным выше в сегодняшнем уроке. Если показатели корней одинаковые, просто перемножаем подкоренные выражения. А если разные — используем злобную формулу \[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\].
  3. 3.Наслаждаемся результатом и хорошими оценками.:)

Ну что? Потренируемся?

Пример 1. Упростите выражение:

\[\begin{align} & \sqrt{48}\cdot \sqrt{-\frac{4}{3}}=\sqrt{48}\cdot \left(-\sqrt{\frac{4}{3}} \right)=-\sqrt{48}\cdot \sqrt{\frac{4}{3}}= \\ & =-\sqrt{48\cdot \frac{4}{3}}=-\sqrt{64}=-4; \end{align}\]

Это самое простой вариант: показатели корней одинаковы и нечётны, проблема лишь в минусе у второго множителя. Выносим этот минус нафиг, после чего всё легко считается.

Пример 2. Упростите выражение:

\[\begin{align} & \sqrt{32}\cdot \sqrt{4}=\sqrt{{{2}^{5}}}\cdot \sqrt{{{2}^{2}}}=\sqrt{{{\left({{2}^{5}} \right)}^{3}}\cdot {{\left({{2}^{2}} \right)}^{4}}}= \\ & =\sqrt{{{2}^{15}}\cdot {{2}^{8}}}=\sqrt{{{2}^{23}}} \\ \end{align}\]

Здесь многих смутило бы то, что на выходе получилось иррациональное число. Да, так бывает: мы не смогли полностью избавиться от корня, но по крайней мере существенно упростили выражение.

Пример 3. Упростите выражение:

\[\begin{align} & \sqrt{a}\cdot \sqrt{{{a}^{4}}}=\sqrt{{{a}^{3}}\cdot {{\left({{a}^{4}} \right)}^{6}}}=\sqrt{{{a}^{3}}\cdot {{a}^{24}}}= \\ & =\sqrt{{{a}^{27}}}=\sqrt{{{a}^{3\cdot 9}}}=\sqrt{{{a}^{3}}} \end{align}\]

Вот на это задание хотел бы обратить ваше внимание. Тут сразу два момента:

  1. Под корнем стоит не конкретное число или степень, а переменная $a$. На первый взгляд, это немного непривычно, но в действительности при решении математических задач чаще всего придётся иметь дело именно с переменными.
  2. В конце мы умудрились «сократить» показатель корня и степень в подкоренном выражении. Такое случается довольно часто. И это означает, что можно было существенно упростить вычисления, если не пользоваться основной формулой.

Например, можно было поступить так:

\[\begin{align} & \sqrt{a}\cdot \sqrt{{{a}^{4}}}=\sqrt{a}\cdot \sqrt{{{\left({{a}^{4}} \right)}^{2}}}=\sqrt{a}\cdot \sqrt{{{a}^{8}}} \\ & =\sqrt{a\cdot {{a}^{8}}}=\sqrt{{{a}^{9}}}=\sqrt{{{a}^{3\cdot 3}}}=\sqrt{{{a}^{3}}} \\ \end{align}\]

По сути, все преобразования выполнялись лишь со вторым радикалом. И если не расписывать детально все промежуточные шаги, то в итоге объём вычислений существенно снизится.

На самом деле мы уже сталкивались с подобным задание выше, когда решали пример $\sqrt{5}\cdot \sqrt{3}$. Теперь его можно расписать намного проще:

\[\begin{align} & \sqrt{5}\cdot \sqrt{3}=\sqrt{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt{{{\left({{5}^{2}}\cdot 3 \right)}^{2}}}= \\ & =\sqrt{{{\left(75 \right)}^{2}}}=\sqrt{75}. \end{align}\]

Ну что ж, с умножением корней разобрались. Теперь рассмотрим обратную операцию: что делать, когда под корнем стоит произведение?

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Квадратным корнем из числа X называется число A , которое в процессе умножения самого на себя (A * A ) может дать число X .
Т.е. A * A = A 2 = X , и √X = A .

Над квадратными корнями (√x ), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x — √y ).
А потом привести корни к их простейшей форме — если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя. Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1. Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9 . Первое число 4 является квадратом числа 2 . Второе число 9 является квадратом числа 3 . Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5 .
Все, пример решен. Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54 .

Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3 ,
54 = 2 * 3 * 3 * 3 .

В числе 24 мы имеем множитель 4 , его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9 .

Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6 .

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней – это знаменатель дроби, например, A / (√a + √b) .
Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».
Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a — √b .

Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a — √b) = a – b .

Аналогично, если в знаменателе имеется разность корней: √a — √b , числитель и знаменатель дроби умножаем на выражение √a + √b .

Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 — √5) / ((√3 + √5) * (√3 — √5)) = 4 * (√3 — √5) / (-2) = 2 * (√5 — √3) .

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5) .
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 — √5 .

12 / (√2 + √3 + √5) = 12 * (√2 + √3 — √5) / (2 * √6) = 2 * √3 + 3 * √2 — √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5 .

В итоге получаем:

√7 + √5 ≈ 2,65 + 2,24 = 4,89 .

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

Правила вычитания корней

1. Корень степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: где (правило извлечения корня из произведения).

2. Если , то у (правило извлечения корня из дроби).

3. Если то (правило извлечения корня из корня).

4. Если то правило возведения корня в степень).

5. Если то где т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.

6. Если то 0, т. е. большему положительному подкоренному выражению соответствует и большее значение корня.

7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например,

(правило умножения корней);

(правило деления корней);

8. Правило вынесения множителя из-под знака корня. При

9. Обратная задача - внесение множителя под знак корня. Например,

10. Уничтожение иррациональности в знаменателе дроби.

Рассмотрим некоторые типичные случаи.

  • Значение слова Объясните значение слов: закон, ростовщик, раб-должник. объясните значение слов: закон, ростовщик, раб-должник. ВкУсНаЯ КлУбНиКа (Гость) Школы Вопросы по теме 1.На какие 3 типа можно разделить […]
  • на рацию в машине разрешение нужно? где бы прочитать? Вам необходимо зарегистрировать вашу радиостанцию в любом случае. Рации, которые работают на частоте 462MHz, если Вы не являетесь представителем МВД, на Вас не […]
  • Ставка единого налога - 2018 Ставка единого налога - 2018 для предпринимателей-физлиц первой и второй гpупп расcчитывается в процентах oт размера прожиточного минимума и минимальной зарплаты, установлeнных нa 01 января […]
  • Страховка на авито ГАРАHTИЯ ЛЕГАЛЬНОСТИ. Вы pешили cамoстoятельнo офopмить элeктpoнный aдpес ОCAГO нo у вac ничегo нe получaeтcя?Без пaники! !!Bнeсу зa вaс вce нeобхoдимые данные в элeктрoнную зaявку cтpaxовой […]
  • Порядок исчисления и уплаты акцизного налога Акцизный налог – это один из косвенных налогов на товары и услуги, который включается в их стоимость. Акцизный налог отличается при этом от НДС тем, что накладывается на […]
  • Приложение. Правила землепользования и застройки города Ростова-на-Дону Приложениек решению городской Думыот 17 июня 2008 г. N 405 Правила землепользования и застройки города Ростова-на-Дону С изменениями и […]

Например,

11. Применение тождеств сокращенного умножения к действиям с арифметическими корнями:

12. Множитель, стоящий перед корнем, называется его коэффициентом. Например, Здесь 3 является коэффициентом.

13. Корни (радикалы) называются подобными, если они имеют одинаковые показатели корней и одинаковые подкоренные выражения, а отличаются только коэффициентом. Чтобы судить о том, подобны данные корни (радикалы) или нет, нужно привести их к простейшей форме.

Например, и подобны, так как

УПРАЖНЕНИЯ С РЕШЕНИЯМИ

1. Упростить выражения:

Решение. 1) Перемножать подкоренное выражение нет смысла, так как каждый из сомножителей представляет квадрат целого числа. Воспользуемся правилом извлечения корня из произведения:

В дальнейшем такие действия будем выполнять устно.

2) Попытаемся, если это возможно, представить подкоренное выражение в виде произведения множителей, каждый из которых является кубом целого числа, и применим правило о корне из произведения:

2. Найти значение выражения:

Решение. 1) По правилу извлечения корня из дроби имеем:

3) Преобразуем подкоренные выражения и извлечем корень:

3. Упростить при

Решение. При извлечении корня из корня показатели корней перемножаются, а подкоренное выражение остается без изменения

Если перед корнем, находящимся под корнем, имеется коэффициент, то прежде чем выполнить операцию извлечения корня, вводят этот коэффициент под знак радикала, перед которым он стоит.

Извлечем на основании изложенных правил два последних корня:

4. Возвести в степень:

Решение. При возведении корня в степень показатель корня остается без изменения, а показатели подкоренного выражения умножаются на показатель степени.

(так как определен, то );

Если данный корень имеет коэффициент, то этот коэффициент возводится в степень отдельно и результат записывается коэффициентом при корне.

Здесь мы использовали правило, что показатель корня и показатель подкоренного выражения можно умножать на одно и то же число (мы умножили на т. е. разделили на 2).

Например, или

4) Выражение в скобках, представляющее сумму двух различных радикалов, возведем в куб и упростим:

Поскольку имеем:

5. Исключить иррациональность в знаменателе:

Решение. Для исключения (уничтожения) иррациональности в знаменателе дроби нужно подыскать простейшее из выражений, которое в произведении со знаменателем дает рациональное выражение, и умножить на подысканный множитель числитель и знаменатель данной дроби.

Например, если в знаменателе дроби двучлен то надо числитель и знаменатель дроби умножить на выражение, сопряженное знаменателю, т. е. сумму надо умножить на соответствующую разность и наоборот.

В более сложных случаях уничтожают иррациональность не сразу, а в несколько приемов.

1) В выражении должно быть

Умножая числитель и знаменатель дроби на получим:

2) Умножая числитель и знаменатель дроби на неполный квадрат суммы, получим:

3) Приведем дроби к общему знаменателю:

Решая данный пример, мы должны иметь в виду, что каждая дробь имеет смысл, т. е. знаменатель каждой дроби отличен от нуля. Кроме того,

При преобразовании выражений, содержащих радикалы, часто допускают ошибки. Они вызваны неумением правильно применять понятие (определение) арифметического корня и абсолютной величины.

Правила вычитания корней

Вычислите значение выражения

Решение .

Пояснение .
Для сворачивания подкоренного выражения, представим во втором множителе в его подкоренном выражении число 31 как сумму 15+16. (строка 2)

После преобразования, видно, что сумма во втором подкоренном выражении может быть представлена как квадрат суммы по формулам сокращенного умножения. (строка 3)

Теперь представим каждый корень из данного произведения как степень. (строка 4)

Упростим выражение (строка 5)

Поскольку степень произведения равна произведению степеней каждого из множителей, представим это соответствующим образом (строка 6)

Как видно, по формулам сокращенного умножения имеем разность квадратов двух чисел. Откуда и вычислим значение выражения (строка 7)

Вычислите значение выражения.

Решение .

Пояснение .

Используем свойства корня, что корень произвольной степени частного чисел равен частному корней этих чисел (строка 2)

Корень произвольной степени числа этой же степени равен этому числу (строка 3)

Вынесем из скобки первого множителя минус. При этом все знаки внутри скобки поменяются на противоположные (строка 4)

Выполним сокращение дроби (строка 5)

Представим число 729 как квадрат числа 27, а число 27 как куб числа 3. Откуда и получим значение подкоренного выражения.

Квадратный корень. Начальный уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

1. Введение понятия арифметического квадратного корня

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа называется такое неотрицательное число, квадрат которого равен.
.

Число или выражение под знаком корня должно быть неотрицательным

2. Таблица квадратов

3. Свойства арифметического квадратного корня

Введение понятия арифметического квадратного корня

Давай попробуем разобраться, что это за понятие такое «корень» и «с чем его едят». Для этого рассмотрим примеры, с которыми ты уже сталкивался на уроках (ну, или тебе с этим только предстоит столкнуться).

К примеру, перед нами уравнение. Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом? Вспомнив таблицу умножения, ты легко дашь ответ: и (ведь при перемножении двух отрицательных чисел получается число положительное)! Для упрощения, математики ввели специальное понятие квадратного корня и присвоили ему специальный символ.

Дадим определение арифметическому квадратному корню.

А почему же число должно быть обязательно неотрицательным? Например, чему равен? Так-так, попробуем подобрать. Может, три? Проверим: , а не. Может, ? Опять же, проверяем: . Ну что же, не подбирается? Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!

Однако ты наверняка уже заметил, что в определении сказано, что решение квадратного корня из «числа называется такое неотрицательное число, квадрат которого равен ». А в самом начале мы разбирали пример, подбирали числа, которые можно возвести в квадрат и получить при этом, ответом были и, а тут говорится про какое-то «неотрицательное число»! Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа. К примеру, не равносильно выражению.

А из следует, что.

Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше квадратное уравнение подходит как, так и.

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат .

А теперь попробуй решить такое уравнение. Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля: – не подходит, двигаемся дальше; – меньше трех, тоже отметаем, а что если? Проверим: – тоже не подходит, т.к. это больше трех. С отрицательными числами получится такая же история. И что же теперь делать? Неужели перебор нам ничего не дал? Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между и, а также между и. Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными. И что дальше? Давай построим график функции и отметим на нем решения.

Попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из, делов-то! Ой-ой-ой, выходит, что Такое число никогда не кончается. Как же такое запомнить, ведь на экзамене калькулятора не будет!? Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. и уже сами по себе ответы. Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.
Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной км, сколько км тебе предстоит пройти?

Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора: . Таким образом, . Так чему же здесь равно искомое расстояние? Очевидно, что расстояние не может быть отрицательным, получаем, что. Корень из двух приблизительно равен, но, как мы заметили раньше, -уже является полноценным ответом.

Извлечение корней

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать. Для этого необходимо знать, по меньшей мере, квадраты чисел от до, а также уметь их распознавать.

То есть, тебе необходимо знать, что в квадрате равно, а также, наоборот, что – это в квадрате. Первое время в извлечении корня тебе поможет эта таблица.

Как только ты прорешаешь достаточное количество примеров, то надобность в ней автоматически отпадет.
Попробуй самостоятельно извлечь квадратный корень в следующих выражениях:

Ну как, получилось? Теперь давай посмотрим такие примеры:

Свойства арифметического квадратного корня

Теперь ты знаешь, как извлекать корни и пришло время узнать о свойствах арифметического квадратного корня. Их всего 3:

  • умножение;
  • деление;
  • возведение в степень.

Их ну просто очень легко запомнить с помощью этой таблицы и, конечно же, тренировки:

Как решать
квадратные уравнения

В предыдущих уроках мы разбирали «Как решать линейные уравнения», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное - « 2 », значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +

Чтобы найти « a », « b » и « c » нужно сравнить свое уравнение с общим видом квадратного уравнения « ax 2 + bx + c = 0 ».

Давайте потренируемся определять коэффициенты « a », « b » и « c » в квадратных уравнениях.

  • a = 5
  • b = −14
  • с = 17
  • a = −7
  • b = −13
  • с = 8
  • a = −1
  • b = 1
  • a = 1
  • b = 0,25
  • с = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней .

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду « ax 2 + bx + c = 0 ». То есть в правой части должен остаться только « 0 »;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду « ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения .

Определим коэффициенты « a », « b » и « c » для этого уравнения.

  • a = 1
  • b = −3
  • с = −4

Подставим их в формулу и найдем корни.

Обязательно выучите наизусть формулу для нахождения корней.

С её помощью решается любое квадратное уравнение.

Рассмотрим другой пример квадратного уравнения.

В данном виде определить коэффициенты « a », « b » и « c » довольно сложно. Давайте вначале приведем уравнение к общему виду « ax 2 + bx + c = 0 ».

Теперь можно использовать формулу для корней.

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

Мы помним из определения квадратного корня о том, что извлекать квадратный корень из отрицательного числа нельзя.

Рассмотрим пример квадратного уравнения, у которого нет корней.

Итак, мы получили ситуацию, когда под корнем стоит отрицательное число. Это означает, что в уравнении нет корней. Поэтому в ответ мы так и записали «Нет действительных корней».

Что означают слова «нет действительных корней»? Почему нельзя просто написать «нет корней»?

На самом деле корни в таких случаях есть, но в рамках школьной программы они не проходятся, поэтому и в ответ мы записываем, что среди действительных чисел корней нет. Другими словами «Нет действительных корней».

Неполные квадратные уравнения

Иногда встречаются квадратные уравнения, в которых отсутсвуют в явном виде коэффициенты « b » и/или « c ». Как например, в таком уравнении:

Такие уравнения называют неполными квадратными уравнениями. Как их решать рассмотрено в уроке «Неполные квадратные уравнения».

В наше время современных электронных вычислительных машин вычисление корня из числа не представляется сложной задачей. Например, √2704=52, это вам подсчитает любой калькулятор. К счастью, калькулятор есть не только в Windows, но и в обычном, даже самом простеньком, телефоне. Правда если вдруг (с малой долей вероятности, вычисление которой, между прочим, включает в себя сложение корней) вы окажитесь без доступных средств, то, увы, придется рассчитывать только на свои мозги.

Тренировка ума никогда не помещает. Особенно для тех, кто не так часто работает с цифрами, а уж тем более с корнями. Сложение и вычитание корней - хорошая разминка для скучающего ума. А еще я покажу поэтапно сложение корней. Примеры выражений могут быть следующие.

Уравнение, которое нужно упростить:

√2+3√48-4×√27+√128

Это иррациональное выражение. Для того чтобы его упростить нужно привести все подкоренные выражения к общему виду. Делаем поэтапно:

Первое число упростить уже нельзя. Переходим ко второму слагаемому.

3√48 раскладываем 48 на множители: 48=2×24 или 48=3×16. из 24 не является целочисленным, т.е. имеет дробный остаток. Так как нам нужно точное значение, то приблизительные корни нам не подходят. Квадратный корень из 16 равен 4, выноси его из-под Получаем: 3×4×√3=12×√3

Следующее выражение у нас является отрицательным, т.е. написано со знаком минус -4×√(27.) Раскладываем 27 на множители. Получаем 27=3×9. Мы не используем дробные множители, потому что из дробей вычислять квадратный корень сложнее. Выносим 9 из-под знака, т.е. вычисляем квадратный корень. Получаем следующее выражение: -4×3×√3 = -12×√3

Следующее слагаемое √128 вычисляем часть, которую можно вынести из-под корня. 128=64×2, где √64=8. Если вам будет легче можно представить это выражение так: √128=√(8^2×2)

Переписываем выражение с упрощенными слагаемыми:

√2+12×√3-12×√3+8×√2

Теперь складываем числа одним и тем же подкоренным выражением. Нельзя складывать или вычитать выражения с разными подкоренными выражениями. Сложение корней требует соблюдение этого правила.

Ответ получаем следующий:

√2+12√3-12√3+8√2=9√2

√2=1×√2 - надеюсь, то, что в алгебре принято опускать подобные элементы, не станет для вас новостью.

Выражения могут быть представлены не только квадратным корнем, но так же и с кубическим или корнем n-ной степени.

Сложение и вычитание корней с разными показателями степени, но с равнозначным подкоренным выражением, происходит следующим образом:

Если мы имеем выражение вида √a+∛b+∜b, то мы можем упростить это выражение так:

∛b+∜b=12×√b4 +12×√b3

12√b4 +12×√b3=12×√b4 + b3

Мы привели два подобных члена к общему показателю корня. Здесь использовалось свойство корней, которое гласит: если число степени подкоренного выражения и число показателя корня умножить на одно и то же число, то его вычисление останется неизменным.

На заметку: показатели степени складываются только при умножении.

Рассмотрим пример, когда в выражении присутствуют дроби.

5√8-4×√(1/4)+√72-4×√2

Будем решать по этапам:

5√8=5*2√2 - мы выносим из-под корня извлекаемую часть.

4√(1/4)=-4 √1/(√4)= - 4 *1/2= - 2

Если в тело корня представлено дробью, то часто этой дроби не измениться, если извлечь квадратный корень из делимого и делителя. В итоге мы получили описанное выше равенство.

√72-4√2=√(36×2)- 4√2=2√2

10√2+2√2-2=12√2-2

Вот и получился ответ.

Главное помнить, что из отрицательных чисел не извлекается корень с четным показателем степени. Если четной степени подкоренное выражение является отрицательным, то выражение является нерешаемым.

Сложение корней возможно только при совпадении подкоренных выражений, так как они являются подобными слагаемыми. То же самое относиться и к разности.

Сложение корней с разными числовыми показателями степени производиться посредством приведения к общей корневой степени обоих слагаемых. Это закон действует так же как приведение к общему знаменателю при сложении или вычитании дробей.

Если в подкоренном выражении имеется число, возведенное в степень, то это выражение можно упростить при условии, что между показателем корня и степени существует общий знаменатель.

Сложение и вычитание корней - один из наиболее распространенных «камней преткновения» для тех, кто проходит курс математики (алгебры) в средней школе. Однако научиться правильно складывать и вычитать их очень важно, потому что примеры на сумму или разность корней входят в программу базового Единого Государственного Экзамена по дисциплине «математика».

Для того чтобы освоить решение таких примеров, необходимо две вещи - разобраться в правилах, а также наработать практику. Решив один-два десятка типовых примеров, школьник доведет этот навык до автоматизма, и тогда ему уже будет нечего бояться на ЕГЭ. Начинать освоение арифметических действий рекомендуется со сложения, потому что складывать их немного проще, чем вычитывать.

Проще всего объяснить это на примере квадратного корня. В математике имеется устоявшийся термин «возвести в квадрат». «Возвести в квадрат» означает однократно умножить конкретное число само на себя . Например, если возвести в квадрат 2, получится 4. Если возвести в квадрат 7, получится 49. Квадрат числа 9 равен 81. Таким образом, квадратный корень из 4 - это 2, из 49 - это 7, а из 81 - это 9.

Как правило, обучение этой теме в математике начинается именно с квадратных корней. Для того, чтобы сходу определять его, учащийся средней школы должен наизусть знать таблицу умножения. Тем, кто нетвердо знает эту таблицу, приходится пользоваться подсказками. Обычно процесс извлечения корневого квадрата из числа приводится в виде таблицы на обложках многих школьных тетрадей по математике.

Корни бывают следующих типов:

  • квадратные;
  • кубические (или так называемые третьей степени);
  • четвертой степени;
  • пятой степени.

Правила сложения

Для того чтобы успешно решить типовой пример, необходимо иметь в виду, что не все корневые числа можно складывать друг с другом . Чтобы их можно было сложить, их необходимо привести к единому образцу. Если это невозможно, значит, задача не имеет решения. Такие задачи тоже часто встречаются в учебниках математики в качестве своеобразной ловушки для учащихся.

Не разрешается сложение в заданиях, когда подкоренные выражения отличаются друг от друга. Это можно проиллюстрировать на наглядном примере:

  • перед учеником стоит задача: сложить квадратный корень из 4 и из 9;
  • неопытный ученик, не знающий правила, обычно пишет: «корень из 4 + корень из 9=корень из 13».
  • доказать, что этот способ решения неправильный, очень просто. Для этого нужно найти квадратный корень из 13 и проверить, верно ли решен пример;
  • с помощью микрокалькулятора можно определить, что он составляет примерно 3,6. Теперь осталось проверить решение;
  • корень из 4=2, а из 9=3;
  • Сумма чисел «два» и «три» равняется пяти. Таким образом, данный алгоритм решения можно считать неверным.

Если корни имеют одинаковую степень, но разные числовые выражения, он выносится за скобки, а в скобки вносится сумма двух подкоренных выражений . Таким образом, он извлекается уже из этой суммы.

Алгоритм сложения

Для того чтобы правильно решить простейшую задачу, необходимо:

  1. Определить, что именно требуют сложения.
  2. Разобраться, можно ли складывать значения друг с другом, руководствуясь существующими в математике правилами.
  3. Если они не подлежат сложению, нужно трансформировать их таким образом, чтобы их можно было складывать.
  4. Осуществив все необходимые преобразования, необходимо выполнить сложение и записать готовый ответ. Производить сложение можно в уме или с помощью микрокалькулятора, в зависимости от сложности примера.

Что такое подобные корни

Чтобы правильно решить пример на сложение, необходимо, в первую очередь, подумать о том, как можно его упростить. Для этого нужно обладать базовыми знаниями о том, что такое подобие.

Умение определять подобные помогает быстро решать однотипные примеры на сложение, приводя их в упрощенный вид. Чтобы упростить типовой пример на сложение, необходимо:

  1. Найти подобные и выделить их в одну группу (или в несколько групп).
  2. Заново написать имеющийся пример таким образом, чтобы корни, которые имеют один и тот же показатель, шли четко друг за другом (это и называется «сгруппировать»).
  3. Далее следует еще раз написать выражение заново, на этот раз таким образом, чтобы подобные (у которых один и тот же показатель и одна и та же подкоренная цифра) тоже шли друг за другом.

После этого упрощенный пример обычно легко поддается решению.

Для того, чтобы правильно решить любой пример на сложение, необходимо четко представлять себе основные правила сложения, а также знать о том, что такое корень и каким он бывает.

Иногда такие задачи с первого взгляда выглядят очень сложно, но обычно они легко решаются путем группировки подобных. Самое главное - практика, и тогда ученик начнет «щелкать задачи, как орешки». Сложение корней - один из самых важных разделов математики, поэтому учителя должны отводить достаточно времени на его изучение.

Видео

Разобраться в уровнениях с квадратными корнями вам поможет это видео.