Строение и химический состав костей. Костная ткань

Костная ткань отличается рядом весьма своеобразных качеств, резко выделяющих ее среди всех других тканей и систем человеческого организма и ставящих ее на обособленное место. Основной и главной особенностью костной ткани является ее богатство минеральными солями.

Если принять вес тела взрослого человека в среднем за 70 кг, то костный скелет весит 7 кг, а вместе с костным мозгом - 10 кг (мышцы - „мясо” - весят 30 кг). Сами кости по весу состоят из 25% воды, 30% органического вещества и 45% минералов. Содержание воды и, стало быть, относительное содержание и других ингредиентов колеблется. Количество воды сравнительно очень велико в эмбриональной жизни, оно убывает в детском возрасте и постепенно уменьшается по мере роста и развития ребенка, отрока и зрелого человека, достигая в старости наименьшего отношения к общему весу. Кости с возрастом можно сказать буквально высушиваются.

Органический состав костей формируется главным образом из белков - протеинов, преимущественно оссеина, но в сложную органическую часть костной ткани входят и некоторые альбумины, мукоидные и другие вещества весьма непростого химического строения.

Каков же больше всего нас интересующий минеральный состав костного вещества? 85% солей составляет фосфорнокислая известь, 10,5% углекислый кальций, 1,5% фосфорнокислая магнезия, а остальные 3% - это натрий, калий, примеси хлора и некоторых редких для человеческого организма элементов. Фосфорнокислый кальций, стало быть составляющий 19/20 содержимого всего солевого костного вещества, образует 58% общего веса костей.

Фосфорнокислые соли имеют кристаллическое строение, и кристаллы располагаются в кости правильно, закономерно. Весьма тщательное изучение минерального остова костного вещества, произведенное в 30-х годах при помощи наиболее совершенных методов, в первую очередь путем рентгенологического структурного анализа, показало, что неорганическое костное вещество человека имеет строение фосфатита-апатита, а именно гидроксил-апатита. При этом интересно, что апатит в костях (и в зубах) человека близок или даже подобен естественному минеральному апатиту в мертвой природе. На это тождество апатита человеческого костного и горнорудного происхождения указывает также их сравнительное исследование в поляризационном свете. Человеческий костный апатит отличается еще содержанием незначительного количества галоида хлора или фтора. Некоторые специалисты по структурному анализу стоят на той точке зрения, что в человеческих костях апатит еще связан с другими химическими соединениями, т.е. что кристаллы неорганической костной субстанции - это смесь двух неорганических химических веществ, одна из которых близка к апатиту. Считают, что наиболее правильно физико-химическая структура костного апатита расшифрована венгерским ученым Сент Нарай-Сабо (St. Naray-Szabo). Наиболее вероятна такая формула строения неорганического состава кости: ЗСА 3 (РO 4) 2 . СаХ 2 , где X - это или Cl, F, ОН, V2O, 1 / 2 SO 4 , 1 / 2 СO 3 и т. д. Есть также указания, что апатит состоит из двух молекул - CaF. Са 4 (РO 4) 3 или СаС1. Са 4 (РO 4) 3 .

Чрезвычайно интересны указания Райнольдса (Reynolds) и др. на то, что при некоторых патологических процессах кости теряют свое нормальное химическое апатитовое строение. Это имеет место, например, при гиперпаратиреоидной остеодистрофии (болезни Реклингхаузена), в то время как при болезни Педжета апатитовая структура кристаллов полностью сохраняется.

Костная ткань - это пусть и весьма древняя по филогенезу, но вместе с тем высоко развитая и исключительно тонко и детально дифференцированная, крайне сложная по всем своим жизненным проявлениям мезенхимальная соединительная ткань.

Изменения в костях при различных патологических процессах бесконечно разнообразны; при каждом отдельном заболевании, в каждой отдельной кости, в каждом отдельном случае патологоанатомическая и патофизиологическая, а следовательно, и рентгенологическая картина имеет свои особенности. Все это громадное разнообразие болезненных явлений сводится, однако, в конечном итоге лишь к некоторым не столь уж многочисленным элементарным качественным и количественным процессам.

Болезнь - это, как известно, не только извращенная арифметическая сумма единичных нормальных явлений, при патологических условиях в целом организме и в отдельных органах и тканях возникают специфические качественные изменения, для которых не существует нормальных прообразов. Глубокий качественный метаморфоз претерпевает и болезненно измененная кость. Надкостница, например, образуя на месте диафизарного перелома мозоль, начинает выполнять новую, в норме ей не свойственную функцию, она вырабатывает хрящевую ткань. Опухоль кости связана с развитием, например, эпителиальных, миксоматозных, гигантоклеточных и других образований, столь же чуждых нормальной кости гистологически, сколь химически для нее необычны отложения холестерина при ксантоматозе или керазина при болезни Гоше. Костный аппарат при рахите или педжетовской перестройке приобретает совершенно новые физические, химические, биологические и прочие качества, для которых в нормальной кости мы не в состоянии подыскать количественные критерии для сравнения.

Но эти качественные свойства, специфические для патологических процессов в костной субстанции, к сожалению, сами по себе не могут быть непосредственно определены рентгенологически, они проявляются на рентгенограммах лишь в виде косвенных, вторичных симптомов. Не в их распознавании и изучении сила рентгенологии. Лишь когда качественно измененная ткань в своей количественной определенности дошла до степени возможного обнаружения, вступает в свои права рентгенологический метод исследования. При помощи безупречных экспериментальных исследований Полина Мек (Mack) доказала, что из различных составных частей костной ткани поглощение рентгеновых лучей происходит на 95% за счет минерального состава (80% лучей задерживается кальцием и 15% - фосфором), и только в пределах до 5% теневое изображение костей обусловлено органическим „мягким” ингредиентом костной ткани. Поэтому в силу самой природы рентгенологического исследования в рентгенодиагностике заболеваний костей и суставов на первый план выступает оценка количественных изменений костной ткани. Нельзя весами измерять расстояние. Рентгенолог при помощи своего исключительно ценного, ’Но все же одностороннего метода в настоящее время еще вынужден ограничиться анализом преимущественно двух основных количественных процессов жизнедеятельности кости, а именно созидания кости и ее разрушения.

В компактной кости: 20% - органический матрикс, 70% - неорганические вещества, 10% - вода. В губчатой кости: более 50% - органические компоненты, 33 – 40% - неорганические соединения, 10% - вода.

Неорганический состав костной ткани . В организме человека ~ 1 кг кальция, 99% его находится в костях и зубах. Большая часть Са в костях постоянно обновляется: за сутки кости скелета теряют и опять получают ~ 700 – 800 мг Са. Неорганические компоненты костной ткани представлены:

    кристаллами гидроксиапатита Са 10 (РО 4) 6 (ОН) 2 , которые имеют форму пластин или палочек;

    аморфным фосфатом Са – Са 3 (РО 4) 2 , который считается лабильным резервом ионов Са и Р.

В раннем возрасте преобладает Са 3 (РО 4) 2 , а в зрелой кости – гидроксиапатит.

    Na + , Mg 2+ , K + , Cl - и др.

Органический матрикс костной ткани: ~95% - коллаген типа I. В нем много свободных ε-NH 2 -групп Лиз и оксилизина, а также связанных с остатками Сер фосфатов. Количество протеогликанов в зрелой плотной кости невелико. Среди гликозамингликанов преобладает хондроитин-4-сульфат и меньше содержится хондроитин-6-сульфата, кератансульфата и гиалуроновой кислоты; они участвуют в оссификации. Много цитрата (до90% от общего количества в организме): возможно, цитрат образует комплексные соединения с солями Са и Р и тем самым повышает концентрацию их в ткани до такого уровня, при котором начинается кристаллизация и минерализация.

В течение всей жизни организма продолжается постоянная перестройка костной ткани. Считают, что костная ткань скелета человека почти полностью перестраивается каждые 10 лет. Метаболизм костной ткани, поступление, депонирование и выведение Са и Р регулируются паратирином, кальцитонином, кальцитриолом (1,25(ОН) 2 -Д 3) (повторить!). Паратирин активирует остеокласты, минеральные (в 1-ую очередь Са) и органические компоненты поступают в кровь. Кальцитонин подавляет активность этих клеток, и скорость формирования кости растет. При недостатке витамина Д , участвующего в синтезе Са-СБ, замедляется формирование новых костей и ремоделирование (обновление) костной ткани. Хронический избыток вит.Д ведет к деминерализации костей. Вит.А : при недостаке прекращается рост костей из-за, вероятно, нарушения синтеза хондроитинсульфата; при гипервитаминозе – резорбция кости и переломы. Вит.С нужен для гидроксилирования Про и Лиз; при недостатке: 1) образуется ненормальный коллаген, процессы минерализации нарушаются; 2) нарушается синтез гликозамингликанов: содержание гиалуроновой кислоты в костной ткани повышается в несколько раз, а синтез хондроитинсульфата замедляется.

ХИМИЧЕСКИЙ СОСТАВ ЗУБА.

Твердая часть зуба представлена эмалью, дентином и цементом. Полость зуба выполнена рыхлой соединительной тканью – пульпой.

Эмаль

самая твердая ткань в организме человека, что обусловлено высоким содержанием в ней неорганических веществ (до 97%). Здоровая эмаль содержит 1,2% органических веществ и до 3,8% воды, которая может быть свободной и связанной (в виде гидратной оболочки кристаллов апатитов).

Минеральную основу составляют кристаллы апатитов:

    гидроксиапатит – 75%,

    карбонатапатит – 19%,

    хлорапатит – 4,4%,

    фторапатит – 0,66%,

    неапатитные формы – менее 2%.

Общая формула апатитов: А 10 (ВО 4)Х 2 , где

А – Ca, Cr, Ba, Cd, Mg;

B – P, As, Si;

X – F, OH, Cl, CO 3 2- .

Кристаллы разных зубов неодинаковы; кристаллы эмали ~ в 10 раз больше кристаллов дентина и кости. Состав апатитов может меняться. “Идеальный” апатит - Са 10 (РО 4) 6 (ОН) 2 , т.е. десятикальциевый, где отношение Са/Р = 1,67. Это отношение может меняться от 1,33 до 2,0, т.к. возможно протекание реакций замещения:

Са 10 (РО 4) 6 (ОН) 2 + Mg 2+ → Са 9 Mg(РО 4) 6 (ОН) 2 + Cа 2+

Такое замещение является неблагоприятным, т.к. снижает резистентность эмали. Другое замещение, наоборот, к образованию вещества с большей резистентностью к растворению:

Са 10 (РО 4) 6 (ОН) 2 + F - → Са 10 (РО 4) 6 F(ОН) + ОН -

гидроксифторапатит

Однако при воздействии высоких концентраций F на гидроксиапатит реакция идет по-другому:

Са 10 (РО 4) 6 (ОН) 2 + 20 F - → 10 СаF 2 + 6 РО 4 3- + 2 ОН -

Образовавшийся фторид Са быстро исчезает с поверхности зубов.

В кристаллической решетке гидроксиапатитов могут быть вакантные места, что повышает способность кристаллов к поверхностным реакциям. Н-р, если десятикальциевый гидроксиапатит имеет общий нейтральный заряд, то восьмикальциевый гидроксиапатит заряжен отрицательно: (Са 8 (РО 4) 6 (ОН) 2) 4- и способен связывать противоионы.

Каждый кристалл гидроксиапатита покрыт гидратной оболочкой (~1 нм). Проникновение различных веществ в кристалл гидроксиапатита идет в 3 стадии:

1 стадия – ионный обмен между раствором, омывающим кристалл, и гидратной оболочкой, в которой в результате могут накапливаться фосфат, карбонат, цитрат, Са, Sr. Некоторые ионы (К + , Cl -) могут легко входить в гидратный слой и покидать его, другие ионы (Na + , F -), наоборот, проходят в кристалл гидроксиапатита. 1-ая стадия – очень быстрый процесс, длится несколько минут, в основе – процесс диффузии;

2 стадия – обмен ионами между гидратной оболочкой и поверхностью кристалла гидроксиапатита. Протекает медленнее (несколько часов). Поверхностно расположенные ионы кристалла отрываются, уходят в гидратную оболочку, на их место встают другие, из гидратного слоя. В поверхность кристалла гидроксиапатита проникают фосфат, Са, F, карбонат, Sr, Na;

3 стадия – внедрение ионов с поверхности вглубь кристалла, т.е. внутрикристаллический обмен. Внутрь кристалла могут проникнуть Са, Sr, фосфат, F. Течет долго, дни – месяцы.

Т.о., кристаллы гидроксиапатита нестабильны, их состав и свойства изменяются в зависимости от раствора, омывающего кристалл. Это используется в практической стоматологии.

Большая часть кристаллов гидроксиапатита в эмали определенным образом ориентирована и упорядочена в виде более сложных образований – эмалевых призм, каждая из которых состоит из тысяч и миллионов кристаллов. Эмалевые призмы собраны в пучки.

Органические вещества эмали представлены белками, пептидами, свободными аминокислотами (Гли, Вал, Про, Опр), жирами, цитратом, углеводами (галактоза, глюкоза, манноза, глюкуроновая кислота, фукоза, ксилоза).

Белки эмали делят на 3 группы:

I – водорастворимые белки; молекулярная масса – 20000, не свзываются с минеральными веществами;

II – кальций-связывающий белок (Са-СБ): молекулярная масса 20000; 1 моль Са-СБ может связывать 8 – 10 ионов Са и образовывать в нейтральной среде нерастворимый комплекс с Са 2+ по типу ди-, три- и тетрамеров массой 40 - 80 тыс. В образовании агрегатов Са-СБ с Са участвуют фосфолипиды. В кислой среде комплекс распадается;

III – белки, не растворимые в ЭДТА и HCl (даже в 1N р-ре). Нерастворимые белки эмали по аминокислотному составу похожи на коллаген, но не идентичны ему: в белке эмали меньше, чем в коллагене, Про и Гли, почти нет Опр, но много связанных с ним углеводов.

Роль белка : 1) окружая апатиты, белок предотвращает контакт кислоты с ними или смягчает ее влияние, т.е. задерживают деминерализацию этого слоя;

2) являются матрицей для минерализации и реминерализации (в механизме биологического обызвествления).

Предложена функционально-молекулярная модель строения эмали , в соответствии с которой молекулы Са-СБ, соединенные между собой кальциевыми мостиками, формируют трехмерную сетку; Са при этом может быть свободным или входить в структуру гидроксиапатита. Эта сетка через Са крепится к остову (каркасу, мягкому скелету эмали), который формируется нерастворимым белком. Функциональные группы Са-СБ, способные связать Са, а это фосфат в составе или фосфосерина или фосфолипидов, связанных с белком; СООН-группы Глу, Асп, аминоцитрата, служат центрами (точками) нуклеации при кристаллизации. Т.о., белки обеспечивают ориентацию в ходе кристаллизации, строгую упорядоченность, равномерность и последовательность формирования эмали. Степень минерализации зависит от саливации, кровоснабжения, пересыщенности Са 2+ и фосфатом, от рН среды и т.д.

Дентин

составляет основную массу зуба. (Коронковая часть зуба покрыта эмалью, корневая – цементом). Состав: до 72% - неорганические вещества (главным образом, фосфат, карбонат, фторид кальция), ~ 28% - органические вещества (коллаген) и вода. Дентин построен из основного вещества и проходящих в нем трубочек, в которых находятся отростки одонтобластов и окончания нервных волокон, проникающих из пульпы. Основное вещество содержит собранные в пучки коллагеновые волокна и склеивающее вещество, в котором имеется большое количество минеральных солей. Процесс образования дентина происходит в течение всего периода функционирования зуба при наличии жизнеспособной пульпы. Дентин, образующийся после прорезывания зуба, называют вторичным. Он характеризуется меньшей степенью минерализации и большим содержанием коллагеновых фибрилл. По дентинным трубочкам может циркулировать дентинная жидкость и поступать питательные вещества. Межканальцевое вещество представлено кристаллами гидроксиапатита, имеет высокую плотность и твердость. В цитоплазме одонтобластов много фибрилл, есть свободные рибосомы, липидные гранулы.

Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества – 70% и вода – 10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33-40%. Количество воды приблизительно то же, что и в компактной кости.

Органический матрикс костной ткани. Приблизительно 95% органического матрикса приходится на коллаген типа I. Данный тип коллагена входит также в состав сухожилий и кожи, однако коллаген костной ткани обладает некоторыми особенностями. В нем несколько больше оксипролина, а также свободных аминогрупп лизиновых и оксилизиновых остатков. Это обусловливает наличие большего количества поперечных связей в коллагеновых волокнах и их большую прочность. По сравнению с коллагеном других тканей костный коллаген характеризуется повышенным содержанием фосфата, который в основном связан с остатками серина.

Белки неколлагеновой природы представлены гликопротеинами, белковыми компонентами протеогликанов. Принимают участие в росте и развитии кости, процессе минерализации, водно-солевом обмене. Альбумины участвуют в транспорте гормонов и других веществ из крови.

Преобладающим белком неколлагеновой природы является остеокальцин . Он присутствует только в костях и зубах. Это небольшой (49 аминокислотных остатков) белок, называемаый также костным глутаминовым белком или gla-белком. В молекуле остеокальцина обнаружены три остатка
γ-карбоксиглутаминовой кислоты. За счет этих остатков он способен связывать кальций. Для синтеза остеокальцина необходим витамин К (рис. 34).

Рис. 34. Посттрансляционная модификация остеокальцина

В состав органического матрикса костной ткани входят гликозаминогликаны, основным представителем которых является хондроитин-4-сульфат. Хондроитин-6-сульфат, кератансульфат и гиалуроновая кислота содержатся в небольших количествах. Окостенение сопровождается изменением гликозаминогликанов: сульфатированные соединения уступают место несульфатированным. Гликозаминогликаны участвуют в связывании коллагена с кальцием, регуляции водного и солевого обмена.

Цитрат необходим для минерализации костной ткани. Он образует комплексные соединения с солями кальция и фосфора, обеспечивая возможность повышения концентрации их в ткани до такого уровня, при котором могут начаться кристаллизация и минерализация. Также принимет участие в регуляции уровня кальция в крови. Кроме цитрата, в костной ткани обнаружены сукцинат, фумарат, малат, лактат и другие органические кислоты.

Костный матрикс содержит небольшое количество липидов. Липиды играют существенную роль в образовании ядер кристаллизации при минерализации кости.

Остеобласты богаты РНК. Высокое содержание РНК в костных клетках отражает их активность и постоянную биосинтетическую функцию.

Неорганический состав костной ткани.

В раннем возрасте в костной ткани преобладает аморфныйм фосфат кальция Са 3 (РО 4) 2 . В зрелой кости преобладающим становится кристаллический гидроксиапатит Са 10 (РО 4) 6 (ОН) 2 (рис. 35). Его кристаллы имеют форму пластин или палочек. Обычно аморфный фосфат кальция рассматривают как лабильный резерв ионов Са 2+ и фосфата.

В состав минеральной фазы кости входят ионы натрия, магния, калия, хлора и др. В кристаллической решетке гидроксиапатита ионы Са 2+ могут замещаться другими двухвалентными катионами, тогда как анионы, отличные от фосфата и гидроксила, либо адсорбируются на поверхности кристаллов, либо растворяются в гидратной оболочке кристаллической решетки.

Рис. 35. Строение кристалла гидроксиапатита

Метаболизм костной ткани характеризуется двумя противоположными процессами: образованием новой костной ткани остеобластами и резорбцией (деградацией) старой остеокластами. В норме количество новообразованной ткани эквивалентно разрушенной. Костная ткань скелета человека практически полностью перестраивается в течение 10 лет.

Образование костной ткани

На1 этапе остеобласты синтезируют сначала протеогликаны и гликозаминогликаны, образующие матрикс, а затем продуцируют фибриллы костного коллагена, которые распределяются в матриксе. Костный коллаген является матрицей для процесса минерализации. Необходимым условием процесса минерализации является пересыщение среды ионами кальция и фосфора. Образование кристаллов минерального остова кости запускают
Са-связывающие белки на матрице коллагена. Остеокальцин прочно связан с гидроксиапатитом и участвует в регуляции роста кристаллов за счет связывания Са 2+ в костях. Электронномикроскопические исследования показали, что формирование минеральной кристаллической решетки начинается в зонах, находящихся в регулярных промежутках между коллагеновыми фибриллами. Образовавшиеся кристаллы в зоне коллагена затем в свою очередь становятся ядрами минерализации, где в пространстве между коллагеновыми волокнами откладывается гидроксиапатит.

На 2 этапе в зоне минерализации при участии лизосомных протеиназ происходит деградация протеогликанов; усиливаются окислительные процессы, распадается гликоген, синтезируется необходимое количество АТФ. Кроме того, в остеобластах увеличивается количество цитрата, необходимого для синтеза аморфного фосфата кальция.

По мере минерализации костной ткани кристаллы гидроксиапатита вытесняют не только протеогликаны, но и воду. Плотная, полностью минерализованная кость практически обезвожена.

Фермент щелочная фосфатаза принимает участие в минерализации. Одним из механизмов ее действия является локальное увеличение концентрации ионов фосфора до точки насыщения, за которым следуют процессы фиксации кальций-фосфорных солей на органической матрице кости. При восстановлении костной ткани после переломов содержание щелочной фосфатазы в костной мозоли резко увеличивается. При нарушении костеобразования наблюдается уменьшение содержания и активности щелочной фосфатазы в костях, плазме и в других тканях.

Ингибитором кальцификации является неорганический пирофосфат. Ряд исследователей считают, что процессу минерализации коллагена в коже, сухожилиях, сосудистых стенках препятствует постоянное наличие в этих тканях протеогликанов.

Процессы моделирования и ремоделирования обеспечивают постоянное обновление костей, а также модификацию их формы и структуры. Моделирование (образование новой кости) имеет место в основном в детском возрасте. Ремоделирование является доминирующим процессом в скелете взрослых; в этом случае происходит лишь замена отдельного участка старой кости. Таким образом, в физиологических и патологическтх условиях происходит не только образование, но и резорбция костной ткани.

Катаболизм костной ткани

Практически одновременно имеет место «рассасывание» как минеральных, так и органических структур костной ткани. При остеолизе усиливается продукция органических кислот, что приводит к сдвигу рН в кислую сторону. Это способствует растворению минеральных солей и их удалению.

Резорбция органического матрикса происходит под действием лизосомных кислых гидролаз, спектр которых в костной ткани довольно широк. Они участвуют во внутриклеточном переваривании фрагментов резорбируемых структур.

При всех заболеваниях скелета происходят нарушения процессов ремоделирования кости, что сопровождается возникновением отклонений в уровне биохимических маркеров.

Имеются общие маркеры формирования новой костной ткани , такие как костно-специфическая щелочная фосфатаза, остеокальцин плазмы, проколлаген I, пептиды плазмы. К биохимическим маркерам резорбции кости относятся кальций в моче и гидроксипролин, пиридинолин мочи и дезоксипиридинолин, являющиеся производными поперечных волокон коллагена, специфичных для хрящей и костей.

Факторами , влияющими на метаболизм костной ткани, являются гормоны, ферменты и витамины.

Минеральные компоненты костной ткани находятся практически в состоянии химического равновесия с ионами кальция и фосфата сыворотки крови. В регуляции поступления, депонирования и выделения кальция и фосфата важную роль играют паратгормон и кальцитонин.

Действие паратгормона приводит к увеличению числа остеокластов и их метаболической активности. Остеокласты способствуют ускоренному растворению содержащихся в костях минеральных соединений. Таким образом, происходит активация клеточных систем, участвующие в резорбции кости.

Паратгормон увеличивает также реабсорбцию ионов Са 2+ в почечных канальцах. Суммарный эффект проявляется в повышении уровня кальция в сыворотке крови.

Действие кальцитонина состоит в снижении концентрации ионов Са 2+ за счет отложения его в костной ткани. Он активирует ферментную систему остеобластов, повышает минерализацию кости и уменьшает число остеокластов в зоне действия, т. е. угнетает процесс костной резорбции. Все это увеличивает скорость формирования кости.

Витамин D участвует в биосинтезе Са 2+ -связывающих белков, стимулирует всасывание калиция в кишечнике, повышает реабсорбцию кальция, фосфора, натрия, цитрата, аминокислот в почках. При недостатке витамина D эти процессы нарушаются. Прием в течение длительного времени избыточных количеств витамина D приводит к деминерализации костей и увеличению концентрации кальция в крови.

Кортикостероиды увеличивают синтез и секрецию паратгормона, усиливают деминерализацию кости; половые гормоны ускоряют созревание и сокращают период роста кости; тироксин усиливает рост и дифференцировку ткани.

Действие витамина С на метаболизм костной ткани обусловлено, прежде всего, влиянием на процессе биосинтеза коллагена. Аскорбиновая кислота является кофактором пролил- и лизилгидроксилаз и необходима для осуществления реакции гидроксилирования пролина и лизина. Недостаток витамина С приводит также к изменениям в синтезе гликозаминогликанов: содержание гиалуроновой кислоты в костной ткани увеличивается в несколько раз, тогда как биосинтез хондроитинсульфатов замедляется.

При недостатке витамина А происходит изменение формы костей, нарушение минерализации, задержка роста. Считают, что данный факт обусловлен нарушением синтеза хондроитинсульфата. Высокие дозы витамина А приводят к избыточной резорбции кости.

При недостатке витаминов группы В рост кости замедляется, что связано с нарушением белкового и энергетического обмена.

Особенности зубной ткани

Основную часть зуба составляет дентин . Выступающая из десны часть зуба, коронка, покрыта эмалью , а корень зуба покрыт зубным цементом . Цемент, дентин и эмаль построены подобно костной ткани. Белковый матрикс этих тканей состоит главным образом из коллагенов и протеогликанов. Содержание органических компонентов в цементе – около 13%, в дентине – 20%, в эмали – всего 1-2%. Высокое содержание минеральных веществ (эмаль – 95%, дентин – 70%, цемент – 50%) определяет высокую твердость зубной ткани. Наиболее важным минеральным компонентом является гидроксиапатит [Са 3 РО 4) 2 ] 3 Са(ОН) 2 . Содержатся также карбонатный апатит, хлорапатит и стронцевый апатит.

Эмаль, покрывающая зуб, полупроницаема. Она участвует в обмене ионами и молекулами со слюной. На проницаемость эмали влияют рН слюны, а также ряд химических факторов.

В кислой среде ткань зуба подвергается атаке и утрачивает твердость. Такое распространенное заболевание, как кариес , вызывается микроорганизмами, живущими на поверхности зубов и выделяющими в качестве продукта анаэробного гликолиза органические кислоты, вымывающие из эмали ионы Са 2+ .

Контрольные вопросы

1. Назовите основные органические компоненты костной ткани.

2. Какие неорганические соединения входят в состав костной ткани?

3. В чем различие биохимических процессов, протекающих в остеокластах и остеобластах?

4. Опишите процесс формирования кости.

5. Какие факторы влияют на формирование костной ткани и ее метаболизм?

6. Какие вещества могут быть биохимическими маркерами процессов, протекающих в костной ткани?

7. Каковы особенности биохимического состава зубной ткани?


Литература

1. Березов, Т.Т. Биологическая химия. / Т.Т. Березов, Б.Ф. Коровкин. - М.: ОАО «Издательство «Медицина»», 2007. - 704 с.

2. Биохимия. / Под ред. Е.С. Северина. - М.: ГЭОТАР-Медиа, 2014. -
768 с.

3. Биологическая химия с упражнениями и задачами. / Под ред. Е.С. Северина. - М.: ГЭОТАР-Медиа, 2013. - 624 с.

4. Зубаиров, Д.М. Руководство к лабораторным занятиям по биологической химии. / Д.М. Зубаиров, В.Н. Тимербаев, В.С. Давыдов. - М.: ГЭОТАР-Медиа, 2005. - 392 с.

5. Шведова, В.Н. Биохимия. /В.Н. Шведова. – М.: Юрайт, 2014. – 640 с.

6. Николаев, А.Я. Биологическая химия. / А.Я. Николаев. - М.: Медицинское информационное агентство, 2004. - 566 с.

7. Кушманова, О.Б. Руководство к лабораторным занятиям по биологической химии. / О.Б. Кушманова, Г.И. Ивченко. - М. - 1983.

8. Ленинджер, А. Основы биохимии / А. Ленинджер. - М., «Мир». - 1985.

9. Марри, Р. Биохимия человека. / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл. - Т. 1. - М.: Мир, 1993. - 384 с.

10. Марри, Р. Биохимия человека. / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл. - Т. 2. - М.: Мир, 1993. - 415 с.

Вестн. Ом. ун-та. 2015. № 4. С. 39-44.

УДК 54.062, 543.544.5.068.7

С.А. Герк, О.А. Голованова

Проведено сравнительное исследование микро- и макроэлементного состава костных тканей человека в «норме» с содержанием элементов в костных образцах, поврежденных вследствие коксартроза, а также в физиогенных (дентин и эмаль зуба) и в патогенных (слюнные, зубные и почечные камни) биоминералах. Показано, что в «норме» костная ткань по минеральному составу наиболее близка к дентину и к зубным камням. Установлено, что в костных тканях человека при коксартрозе изменяется величина атомного соотношения Са/Р и содержание элементов: меди, олова, железа, марганца, стронция и хрома (в ряде случаев). Выявлена взаимосвязь концентрационных рядов микроэлементов Zn > Sr > Fe пораженной костной ткани с рядами для зубных и почечных камней.

Ключевые слова: элементный состав, физиогенная и патогенная минерализация, кости, коксартроз, спектроскопия. * 2

Введение

Костная ткань относится к высокоспециализированным физиогенным биоминералам и представляет собой биохимическую систему с многокомпонентным составом и сложным строением. Благодаря такой структурной организации данный органо-минеральный агрегат (далее - ОМА) обеспечивает нормальное течение обмена веществ (метаболизма) в организме человека в целом. При этом, находясь в постоянном контакте с биологическими жидкостями, костная ткань является местом депонирования макро- и микроэлементов . Известно, что элементы не синтезируются в организме, а поступают с пищевыми продуктами, водой, воздухом и выполняют важную роль при костном ремоделировании . Так, обобщая литературные данные о роли и степени участия микроэлементов в костеобразовании, их можно разделить на пять групп : 1) активаторы костной минерализации - Cu, Mn, F, Si, V;

2) ингибиторы костной минерализации - Sr, Cd, Be, Fe; 3) активаторы костной резорбции - Mg, Zn, Ba; 4) элементы, принимающие участие в синтезе органических веществ - Zn, Be, Cu, Mn, Si; 5) активаторы костных клеток и ферментов - Mg, Zn, Be и их ингибиторы - Mo. Изменение содержания элементов в костной ткани (избыток или недостаток), прежде всего кальция и фосфора, приводит к нарушению метаболических процессов и является причиной различных костно-суставных заболеваний, патологий зубов и патогенного минералообразования - формирования слюнных, зубных, почечных и других камней . Однако, несмотря на значительное количество работ, в которых описана роль макро- и микроэлементов в физиологических процессах, до сих пор остаются дискуссионными данные по элементному составу костных тканей, в том числе в условиях развития патологии.

Актуальность данной проблемы возрастает и в связи с сохраняющейся сложной экологической обстановкой природных объектов (источников поступления элементов в организм человека) промышленных городов-мегаполисов, а именно: чрезмерным выбросом в атмосферу промышленных отходов, усиленной эксплуатацией почв, нерациональным использованием природных ресурсов и загрязнением водных источников. Так, на сегодняшний день вода многих рек России стала практически не пригодной для питья из-за превышающего ПДК содержания органических веществ синтетического происхождения (СПАВ, ПАУ, диоксины), нефти, нефтепродуктов и солей тяжелых металлов .

Цель работы: изучить особенности элементного состава костной ткани человека в «норме» по сравнению с патогенными ОМА и при костных заболеваниях (на примере коксартроза).

* Работа выполнена при частичной финансовой поддержке совета по грантам Президента Российской Федерации, проект № СП-933.2015.4, Российского фонда фундаментальных исследований (грант № 15-29-04839 офи_м).

© С.А. Герк, О.А. Голованова, 2015

С.А. Герк, О.А. Голованова

Объекты и методы исследования

Работа является продолжением исследования коллекции головок бедренных костей мужчин и женщин Омского региона в возрасте от 30 до 79 лет, удаленных вследствие коксартроза. В качестве контрольных проб костной ткани использованы непораженные образцы, которые извлекались в соответствии с Приказом Министерства здравоохранения СССР от 21 июля 1978 г. № 694 «Об утверждении инструкции о производстве судебно-медицинской экспертизы, положения о бюро судебно-медицинской экспертизы и других нормативных актов по судебно-медицинской экспертизе» (п. 2.24), федеральными законами от 12 января 1996 г. № 8-ФЗ «О погребении и похоронном деле» (п. 3) и от 31 мая 2001 г. № 73-ФЗ «О государственной судебно-экспертной деятельности в Российской Федерации» (п. 14, 16). Для изучения динамики заболевания из бедренных головок получали по три горизонтальных среза: верхний, средний и нижний (порядок чередования приведен в направлении гиалиновый хрящ - бедренная кость), которые в дальнейшем анализировали в виде сухих порошкообразных проб. Усредненный состав разных пораженных пластинок сравнивали между собой и с контрольными образцами.

мощью следующих спектральных методов анализа: ионов кальция - метод атомно-абсорбционной спектроскопии (ААС) на спектрометре AAS 1N по ГОСТ 26570-95 ; общий фосфор - спектрофотометрический метод на автоматизированной линии «Contiflo» (ГОСТ 26657-97) ; остальные элементы -метод масс-спектроскопии с индуктивно-связанной плазмой (ИСП-МС) на спектрофотометре ELAN 9000. Концентрации ионов элементов рассчитывали по градуировочным кривым с использованием стандартных растворов. Пределы обнаружения элементов методами спектрофотомерии и ААС составляли 10-6 масс. %, для ИСП-МС - 10-9 -10--13 масс. %.

Статистическую обработку полученных данных проводили методом Стьюдента для доверительной вероятности Р = 0,95, исходя из предположения об их распределении по нормальному закону (программный пакет Statistic Soft 2006).

Результаты и их обсуждение

Анализ литературных источников показал, что данные по количественному содержанию элементов в костной ткани достаточно противоречивы , что обусловлено спецификой состава разных костей, их типом (табл. 1), возрастными особенностями человека (табл. 2), условиями среды проживания (климат, техногенное воздействие), характером питания и т. д.

Таблица 1

Исследуемая кость Mn Al Си Ti V

Малоберцовая 0,173 ± 0,030 0,113 ± 0,017 0,086 ± 0,030 0,062 ± 0,006 0,006 ± 0,004

Большеберцовая 0,184 ± 0,024 0,106 ± 0,024 0,084 ± 0,022 0,063 ± 0,006 0,006 ± 0,0007

Бедренная 0,220 ± 0,048 0,117 ± 0,034 0,040 ± 0,012 0,078 ± 0,010 0,006 ± 0,001

В среднем 0,192 ± 0,031 0,112 ± 0,016 0,070 ± 0,020 0,068 ± 0,008 0,006 ± 0,001

Таблица 2

Микроэлементы Возраст костной ткани

эмбрионы от 16-17 до 21 недели от одного дня до 19 лет от 20 до 40 лет от 50 до 83 лет

Fe 215,8 146,2 132,8 119,3

Si 23,8 25,3 22,4 16,4

Al 5,96 6,45 7,42 8,09

Pb 4,48 3,03 7,09 1,04

Cu 2,86 1,64 1,42 1,24

Sr 1,27 2,73 1,48 6,78

Ti 1,01 1,13 1,02 1,25

Mn 0,99 1,08 1,17 1,24

Сравнительное исследование литературных и экспериментальных данных позволило установить, что основными макроэлементами кости, содержание которых составляет больше 10-3 % от массы тела, выступают кальций, фосфор, натрий, калий, магний; к элементам с массовым составом от 10-3 до 10-6 % относятся цинк, марганец, медь, никель и другие (табл. 3 и 4). Видно, что физиогенные ОМА (кости, зубы) по макроэлементному составу значительно отличаются от патогенных конкрементов фосфатного типа, встречающихся наиболее часто в

организме человека (зубные, слюнные и почечные камни). Интервал варьирования элементов в костной и зубной ткани более узкий, очевидно, вследствие закономерного характера формирования физиогенных биоминералов и меньшего влияния эндогенных факторов на данный процесс. Условно можно отметить, что костная ткань по минеральному составу (Са, Р, Na, К, Mg) наиболее близка к физиогенному ОМА - дентину и к патогенным биоминералам -зубным камням, что может указывать на сходство составов минералообразующих сред и/или механизмов их образования .

Элементный состав костной ткани человека в норме и при патологии

Таблица 3

Макроэлементный состав физиогенных (костной ткани, эмали и дентина зуба) и патогенных (зубных, слюнных, почечных камней) ОМА фосфатного типа, масс. %

Компонент Костная ткань Эмаль Дентин Зубные камни 9; 25] Слюнные камни Почечные камни г

«норма» при коксартрозе

Ca/P 1,37 1,77 - 0,89 ± 0,04 1,81 ± 0,01 1,63 1,6-1,69 1,61 1,64-1,65 1,49-2,04 1,49-1,79 - 1,67

Na 0,70 0,90 0,50 0,44 ± 0,02 0,46 ± 0,14 0,50-0,90 0,25-0,90 0,60 0,7 0,37-0,88 0,28-0,95 0,1-2,43 -

Mg 0,55 0,72 0,30 0,19 ± 0,007 0,22 ± 0,01 0,07-0,44 0,25-0,56 1,23 0,8-1,0 0,32-0,50 0,20-0,24 1,5-84,58 -

K 0,03 0,03 0,20 0,058 ± 0,013 0,028 ± 0,013 0,001-0,008 0,05-0,30 0,05 0,02-0,04 0,11-0,13 0,03-0,12 0,07-4,05 -

Примечание: «-» - данные отсутствуют.

Таблица 4

Элементный состав физиогенных (костной ткани, эмали, дентина зуба) и патогенных (зубных, слюнных, почечных камней) ОМА фосфатного типа, -10-4 масс. %

Элемент Костная ткань Эмаль Дентин Зубные камни Слюнные камни Почечные камни

1; . Возможно, доминирующей заменой ионов в структуре костного апатита в данном случае является анионное замещение фосфатных тетраэдров, что является одной из причин снижения окристалли-зованности гидроксилапатита костных тканей .

Как и в случае макроэлементного состава, содержание микроэлементов в костной ткани значительно отличается от патогенных ОМА (табл. 4). В состав патогенных биоминералов входит наибольшее число микроэлементов, что в очередной раз подтвер-

ждает спонтанный и физиологически неконтролируемый механизм их образования. Все элементы в патогенных конкрементах содержатся в меньшем количестве, чем в костях. В отличие от других физиогенных минералов, костная ткань по содержанию Pb, Si, Zn, Sr, Ag уступает только эмали. При этом в ней содержится больше меди (в 13 раз) и бария (в 5 раз). По сравнению с дентином данный биоминерал наиболее богат практически всеми микроэлементами, за исключением цинка и серебра.

Ряды ранжирования микроэлементов, содержание которых составляет 0,0050,2 масс. %, по увеличению их концентраций выглядят следующим образом (табл. 4) : для костной ткани - Fe > > Cu > Ba > Pb > Si > Zn > Sr > Ni > Al > Mn; зубных камней - Zn > Sr > Fe > Ti > Cr; для слюнных камней - Ti > V > Cr > Fe > I; для почечных камней - Sr > Zn > Fe. Видно, что по сравнению с костной тканью в патогенных биоминералах число элементов в ряду, содержание которых в ОМА не менее 0,005 масс. %, уменьшается в 2 раза (для слюнных и зубных камней) и в 3 раза (для почечных камней). Остальные элементы в патогенных агрегатах представлены в меньшем количестве, чем в кости. Во всех рядах присутствует железо, в почечных и зубных образованиях в больших количествах содержится также Sr и Zn, а в слюнных и почечных появляются новые элементы Cr и Ti. Приведенные данные указывают на разную степень участия элементов в патогенной и физиогенной минерализации. Первостепенная роль в минерализации разного характера принадлежит железу, стронцию и цинку. В патогенных ОМА принимают участие микроэлементы, такие как Cr и Ti.

Головки бедренных костей исследуемой нами коллекции, в отличие от литературных данных, содержат микроэлементы в малых количествах (табл. 4). Так, концентрационные ряды элементов, содержание которых превышает 0,005 масс. %, состоят из двух и трех элементов: в «норме» - Zn > Sr и при коксартрозе - Zn > Sr > Fe. Такая последовательность элементов при повреждении костной ткани коррелирует с рядами для зубных и почечных камней, что может указывать на патологическое течение процесса минерализации костной ткани при коксартрозе.

Выявлено, что в пораженных верхних срезах костных тканей лиц первой и второй возрастных групп (30-49 и 50-59 лет) по сравнению с контрольными пробами повышено содержание ионов меди в 3 раза, олова в 4 раза, железа в 11 раз, марганца в 17 раз и хрома (в ряде образцов) в 18 раз (рис. 2). Также в отличие от «нормы» в поврежденных пробах можно отметить незначительное уменьшение количества ионов стронция.

Элементный состав костной ткани человека в норме и при патологии

Следовательно, полученные результаты свидетельствуют о нарушении процессов костного ремоделирования при коксартрозе. С одной стороны, возрастает содержание элементов, оказывающих активирующее действие на костную минерализацию (Cu и Mn), с другой, изменяется количество микроэлементов, ускоряющих скорость костной резорбции (Fe и Sn). Завышенные концентрации токсичного элемента хрома в ряде образцов также указывают на разрушающий (дегенеративный) характер метаболизма при данном заболевании. Роль олова в костном обмене в настоящее время не изучена.

В образцах костных тканей лиц третьей и четвертой категорий (60-69 и 70-79 лет) определенных закономерностей по изменению содержания микроэлементов при патологии установить не удалось, что может быть связано с процессами старения костной ткани и наличием сопутствующих заболеваний в данном возрастном интервале.

Таким образом, в работе установлено, что при заболеваниях, обусловленных нарушением Са/Р обмена веществ, таких как коксартроз, в костных тканях человека изменяется содержание следующих элементов: меди, олова, железа, марганца, стронция и хрома (в ряде случаев). При данном повреждении выявлено увеличение значения Са/Р-коэффициента, в основном за счет уменьшения содержания общего фосфора.

В состав костной ткани, в отличие от патогенных ОМА, входит меньшее количество микроэлементов, содержание которых зависит от степени минерализации костного об-

разца. Выявлена взаимосвязь концентрационных рядов микроэлементов Zn > Sr > Fe пораженной костной ткани с рядами для зубных и почечных камней, что может указывать на патологическое течение костной минерализации.

Показано, что в условиях физиологической «нормы» костная ткань по минеральному составу наиболее близка к физиогенному ОМА - дентину и к патогенным биоминералам - зубным камням.

Полученные данные могут быть использованы при изучении процессов костной минерализации в модельных условиях с целью разработки эффективных лечебных и профилактических методов восстановления костных тканей при костно-суставных заболеваниях.

ЛИТЕРАТУРА

Авицын А. П., Жаворонков А. А., Риш М. А., Строчкова Л. С. Микроэлементы человека. М., 1991. 496 с.

Зацепин С.Т. Костная патология взрослых. М., 2001. 640 с.

Лунева С. Н. Биохимические изменения в тканях суставов при дегенеративно-дистрофических заболеваниях и способы биологической коррекции: дис. ... д-ра биол. наук. Тюмень, 2003. 297 с.

Ерохин А. Н., Исаков Б. Д., Накоскин А. Н. Особенности микроэлементного состава костной ткани при чрескостном дистракционном остеосинтезе методом Илизарова в условиях высокогорья (экспериментальное исследование) // Саратовский научно-медицинский журнал.

2014. № 10 (1). С. 119-123.

Новиков М. И. Динамика накопления биогенных макро- и микроэлементов в костной ткани собак в постнатальном онтогенезе и в условиях чрескостного дистракционного остеосинтеза: дис. ... канд. биол. наук. Н. Новгород, 2008. 137 с.

Лемешева С. А. Химический состав, свойства костного апатита и его аналогов: дис. ... канд. хим. наук. М., 2010. 177 с.

Прохончуков А. А., Жижина Н. А., Тигранян Р. А. Гомеостаз костной ткани в норме и при экстремальных условиях. М., 1984. 200 с.

Голованова О. А., Борбат В. Ф. Почечные камни. М., 2005. 171 с.

Голованова О. А. Биоминералогия мочевых, желчных, зубных и слюнных камней из организма человека: дис. ... д-ра геол.-минерал. наук. Томск, 2009. 240 с.

Александрова Т. В., Нахаева В. И. Генотоксический анализ водных проб естественного источника питьевой воды из реки Омь на генные и хромосомные мутации // Современные проблемы науки и образования. 2014. № 6. URL: http://www.science-education.ru/120-15369.

ГОСТ 26570-95. Корма, комбикорма, комбикормовое сырье. Методы определения кальция. М., 2000.

ГОСТ 26657-97. Корма, комбикорма, комбикормовое сырьё. Метод определения содержания фосфора. М., 2000.

С.А. Герк, О.А. Голованова

Накоскин А. Н. Возрастные изменения и половые различия биохимического состава костной ткани человека: дис. ... канд. биол. наук. Курган, 2004. 111 с.

Lundager Madsen H. E., Abbona F., Barrese E. Effects of cadmium on crystallization of calcium phosphates // Crystal Research and Crystal Technology. 2004. Vol. 39. № 3. P. 235-239.

Войнар А. О. Значение микроэлементов в организме человека и животных. М., 1955. 24 с.

Энока P. M. Основы кинезиологии: пер. с англ. Киев: Олимпийская литература, 1998. 399 с.

Гилинская Л. Г., Занин Ю. Н., Назьмов В. П. Типоморфизм парамагнитных радикалов CO2-, CO3- и CO33- в природных карбонатапатитах // Геология и геофизика. 2002. T. 43. № 3. С. 297303.

Матвеева Е. Л. Биохимические изменения в синовиальной жидкости при развитии дегенеративно-дистрофических процессов в коленном суставе: автореф. дис. ... д-ра биол. наук. Тюмень, 2007. 24 с.

Вербова А. Ф. Состояние костной ткани и кальций-фосфорного обмена у рабочих фосфорного производства // Казанский медицинский журнал. 2002. Т. 83. № 2. С. 148-150.

Ньюман У, Ньюман М. Минеральный обмен кости / пер. с англ. О. Я. Терещенко, Л. Т. Туточ-киной; под ред. Н. Н. Демина. М., 1961.270 с.

Legeros R. Z. Calcium phosphates in oral biology and medicine. Karger, 1991. 221 p.

Корж А. А, Белоус А. М., Панов Е. Я. Репаративная регенерация кости. М., 1972. 215 с.

Пилат Т. Л. Зубной камень и его влияние на ткани пародонта // Стоматология. 1984. № 3. С. 88-90.

Ткаленко А. Ф. Влияние физико-химических характеристик слюны, слюнных и зубных отложений на исход лечения больных слюннокаменной болезнью: автореф. дис. . канд. мед. наук. М., 2004. 26 с.

Киселева Д. В. Особенности состава, структуры и свойств ряда фосфатных и карбонатных биоминералообразований: дис. ... геол.-минерал. наук. Екатеринбург, 2007. 197 с.

LeGeros R. Z. Formation and transformation of calcium phosphates: relevance to vascular calcification // Zeitschrift fur Kardiologie. 2001. Supplement Band 90. Р. 116-124.

Смолеговский А. М. История кристаллохимии фосфатов. М., 1986. 263 с.

Баринов С. М., Комлев В. С. Биокерамика на основе фосфатов кальция. М., 2005. 204 с.

Christoffersen M. R., Seierby N., Zunic T. B., Chris-toffersen J. Kinetics of dissolution of triclinic calcium pyrophosphate dehydrate crystals // Journal of Crystal Growth. 1999. Vol. 203. Р. 234-243.

В состав свежей кости взрослого человека входит вода – 50%, жир – 16%, прочие органические вещества – 12%, неорганические в-ва – 22%.

Обезжиренные и высушенные кости содержат приблизительно 2/3 неорганических и 1/3 органических веществ. Кроме того, в составе костей имеются витамины А, Д и С.

Органическое вещество костной ткани – оссеин – придает им эластичность. Он растворяется при кипячении в воде, образуя костный клей. Неорганическое в-во костей представлено главным образом солями кальция, которые с небольшой примесью других минеральных в-в образуют кристаллы гидрооксиапатита.

Сочетание органических и неорганических в-в обуславливают прочность и легкость костной ткани. Так, при малом удельном весе, равном 1.87, т.е. в два раза не превышающим удельный вес воды, прочность кости превосходит прочность гранита. Бедренная кость, например, при сжатии по продольной оси выдерживает нагрузки свыше 1500 кг. Если кость подвергнуть обжиганию, то органическое в-во сгорает, а неорганическое остается и сохраняет форму кости и ее твердость, но такая кость становится очень хрупкой и при надавливании крошится. Наоборот, после вымачивания в растворе, кислот, в результате которого растворяются минеральные соли, а органическое в-во остается, кость также сохраняет свою форму, но становится настолько эластичной, что ее можно завязать в узел. Следовательно, эластичность кости зависит от оссеина, а твердость ее – от минеральных в-в.

Химический состав костей связан с возрастом, функциональной нагрузкой, общим состоянием организма. Чем большее нагрузка на кость, тем больше неорганических в-в. Так, например бедренная кость и поясничные позвонки содержат наибольшее количество углекислого кальция. С увеличением возраста количество органических в-в уменьшается, а неорганических увеличивается. У маленьких детей оссеина сравнительно больше, соответственно, кости отличаются большой гибкостью и поэтому редко ломаются. Наоборот, в старости соотношение органических и неорганических в-в изменяется в пользу последних. Кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Классификация костей

По форме, функции и развитию кости делятся на три части: трубчатые, губчатые, смешанные.

Трубчатые кости входят в состав скелета конечностей, играя роль рычагов в тех отделах тела, где преобладают движения с большим размахом. Трубчатые кости делятся на длинные – плечевая кость, кости предплечья, бедренная кость, кости голени и короткие – кости пясти, плюсны и фаланг пальцев. Трубчатые кости характеризуются наличием средней части – диафиза , содержащего полость (костномозговая полость), и двух расширенных концов – эпифизов . Один из эпифизов располагается ближе к туловищу – проксимальный , другой находится дальше от него – дистальный . Участок трубчатой кости, расположенный между диафизом и эпифизом, носит название метафиза . Отростки кости, служащие для прикрепления мышц, называются апофизами.

Губчатые кости находятся в тех отделах скелета, где необходимо обеспечить достаточную прочность и опору при небольшом размахе движений. Среди губчатых костей различают длинные (ребра, грудина), короткие (позвонки, кости запястья, предплюсны) и плоские (кости черепа, кости поясов). К губчатым костям относятся и сесамовидные кости (коленная чашечка, гороховидная кость, сесамовидные кости пальцев кисти и стопы). Они располагаются около суставов, с костями скелета непосредственно не связаны и развиваются в толще сухожилий мышц. Присутствие этих костей способствует увеличению плеча силы мышцы и, следовательно, увеличению ее момента вращения.

Смешанные кости – сюда относятся кости, сливающиеся из нескольких частей, имеющих разную функцию, строение и развитие (кости основания черепа).