Чем определяется высота тона звука. Физические параметры звука

Мы от рождения до смерти пребываем в океане звуков. В городе мы постоянно слышим звуки движущихся машин, разговоры прохожих, фоновые шумы. Дома работают электроприборы, мы включаем телевизоры, радиоприемники, компьютеры. Можно не замечать эти звуки, не обращать на них внимания, но они влияют на наше мировосприятие и на самочувствие. Когда мы находимся, как кажется в тишине, за городом, на природе звуки все равно существуют вокруг нас. листвы, жужжание насекомых, шелест шагов по траве. Абсолютной тишины на Земле в естественных условиях не существует.

С точки зрения физики звук - это упругие волны, распространяющиеся в среде и создающие в ней механические колебания. От чего зависит высота звука и другие наши ощущения?

С точки зрения физиологии звук связан со слухом. И напрямую связан с нашими органами чувств.

Средой для распространения звуковых волн может быть воздух, вода, металл и другие вещества.

Поскольку звук - это он описывается теми же параметрами, что и любая волна. Это частота, длина волны, амплитуда, вектор волны (направление), скорость.

Человек слышит звуки в диапазоне от 15 Гц до 20 000 Гц. Диапазон ниже уровня слышимости называется инфразвуком, выше уровня и до 1 Ггц называется ультразвуком. Выше 1 Ггц - это гиперзвук.

Высота звука

Единица измерения высоты звука это мел. Мелы распределяются по шкале через интервалы, которые на слух воспринимаются как равные.

Ученые обнаружили, что, если воспроизводить короткие импульсы с интервалом 5 миллисекунд, то на слух они будут восприниматься непрерывно.

Как любая информация наших органов чувств, звуковая информация обрабатывается мозгом. Рассмотрим, от чего зависит частота звука. Известен так называемый эффект Шепарда. Звукоряд, который создает иллюзию постоянно повышающегося или понижающегося тона, хотя на самом деле ничего не меняется. Это достигается наложением звуковых волн по октавам (кратным по частоте). Этот эффект интуитивно использовали Бах, Равель, Шопен.

Тоны звука

Сложный тон - это звучание нескольких частот сразу. Простой тон можно воспроизвести с помощью генератора звуковых сигналов, или камертоном. Сложный тон создается музыкальными инструментами и человеческим голосом. Спектр сложного тона состоит из основной частоты и множества дополнительных гармоник, так называемых обертонов. От чего зависит высота тона звука и самого звука? Она зависит от основной частоты тона. Но и интенсивность влияет на восприятие высоты звучания. Чем интенсивность больше, тем звук кажется ниже.

Громкость звука

Громкость звука характеризует уровень звукового ощущения. От чего зависит громкость и высота звука? Восприятие громкости звука - ощущение субъективное и зависит как от интенсивности звука, так и от возраста, пола, этнической принадлежности, условий прослушивания. Ощущение громкости описывается психофизическим законом Вебера-Фехнера. В соответствии с этим законом, если интенсивность звука растет в геометрической прогрессии, то ощущение громкости - в арифметической. (Логарифмическая зависимость). От чего зависит громкость и высота звучания? От множества причин. Высота звучания кажется ниже, когда громкость увеличивается. Человеку всегда низкие и высокие частоты кажутся тише, чем средние.

Тембр звука

Тембр определяется Окраску спектру придают обертоны (гармоники основной частоты). Они придают эмоциональную окраску любому звучанию. От чего зависят высота и тембр звука? Они зависят от конструкции и материалов музыкальных инструментов, от особенностей человеческого голоса. Возникающие многочисленные обертоны придают звучанию неповторимость.

Каждая из знаменитых скрипок Страдивари обладала уникальным тембром. Это определялось и формой резонатора, и типом дерева, и даже лаком покрытия.

Некоторые считают, что особенное восприятие звука человеком способствовало в древности его выживанию. Для анализа внешних шумов необходимо было понять, от чего зависит высота звука, вычленить из массы шумов, звуковых частот звуки подкрадывающегося хищника или вовремя услышать приближение какой-либо природной катастрофы.

Сейчас появилась возможность синтезировать любые звуки, обрабатывать существующие аудиозаписи для достижения нужного эффекта. Но еще на заре звукозаписи делались звуковые комбинации. Примером такого эффекта может служить знаменитый крик Тарзана, созданный искусственно в 1932 г.

Архитектурная акустика

От чего зависит Конечно, от помещения, в котором он возникает.

Об этом знали еще в древности и строили храмы с учетом акустических элементов, теоретическое обоснование для которых было разработано впоследствии. Это и акустическая форма куполов, и акустические раковины.

Звук в музыке начнем изучать с самого простого и доступного — с тех звуков, которые нас окружают. По своей физической природе звук это колебания упругого тела, которые образуют в воздухе звуковые волны. Достигнув уха, воздушная звуковая волна воздействует на барабанную перепонку, от которой колебания передаются во внутреннее ухо и далее на слуховой нерв. Так мы слышим звуки.

Если пока не все понятно, не беда. Потому что уроки музыки не про то как мы слышим. Наша задача разобраться что мы слышим и выделить из всего разнообразия слышимого звуки в музыке.

Все звуки можно разделить на музыкальные и шумовые. В музыкальных звуках человеческое ухо может выделить определенную частоту, которая звучит громче других. В шумовых звуках содержится множество разных частот, их которых мы не можем на слух выделить по громкости какую-то отдельную частоту. В шуме сливаются звуки разной частоты с примерно одинаковой или плавающей громкостью.

Послушайте шумовые и музыкальные звуки:

  • шумовые звуки

Некоторые шумовые звуки применяются в музыке. Из трех представленных шумовых звуков первые два это звуки музыкальных инструментов. Сначала звучит большой барабан, затем треугольник.

Третий шумовой звук это, так называемый, «белый шум». В нем очень много составляющих, которые изменяются случайным образом. На картинке белый шум выглядел бы так:

Шумовые звуки изучать не будем, а приступим сразу к звукам музыкальным.

  • музыкальные звуки:

Если выделить из музыкального звука самую громкую составляющую и нарисовать её, то получим примерно такую картинку:


В реальном звуке картинка была бы посложнее, но, все-таки, главное то, что в музыкальном звуке присутствует самый громкий звук с одной (определенной) частотой. Из таких звуков можно составлять мелодии.

Уроки музыки. Итак, в музыкальных звуках можно выделить определенную частоту. О чем речь? Представим туго натянутую струну. Ударим по ней молоточком. Струна начнет колебания:

Частота, с которой колеблется струна, определяет частоту слышимого звука.
Измеряется частота в герцах: один герц (1 Гц) равен одному колебанию в секунду. Человек способен слышать звук в диапазоне от 16 Гц до 20 тысяч Гц (кГц) при передаче колебаний по воздуху. С возрастом слух ухудшается и звуковой диапазон сужается. Верхняя граница слышимых взрослым человеком звуков примерно 14 тысяч Гц. К тому же наиболее точно и ясно человек слышит ещё более узкий диапазон звуков: примерно от 16 до 4.200 Гц. В этом диапазоне звучат и музыкальные инструменты.

Звук в музыке. Высота звука.

В зависимости от частоты звука мы различаем звуки низкие и высокие. Вообще-то, здесь могли бы применить любые прилагательные, например, жирные и тощие. Однако, обозначение звуков по высоте выбрано не случайно. Оказывается так очень удобно рисовать музыкальные звуки на бумаге. Об этом рассказано на странице «нотная запись».

Чем меньше частота звука, тем более низким он кажется. Так, звук с частотой 200 колебаний в секунду (200 Гц) кажется низким:

Звуки большей частоты кажутся высокими.
Звук с частотой 4000 колебаний в секунду (4000 Гц) кажется высоким:

Высота это одна из характеристик звука в музыке. Каждый звук в музыке имеет свою высоту (частоту) и свое название. Звуки в музыке по высоте подбиралась опытным путем на протяжении столетий. У разных народов существуют разные системы музыкальных звуков и их названий. Мы будем рассматривать только европейскую систему, которая наиболее распространена в мире и используется в России. О звукоряде европейской системы будет рассказано на следующей странице, а сейчас перейдем к ещё одной характеристике звука.

Звук в музыке. Длительность звука.

Длительность характеризует количество времени, в течение которого длится звук.

Например, звук с частотой 440 Гц в течение 6 секунд:

Тот же звук в течение 2 секунд:

Надеюсь с длительностью всё понятно. Уточню, что в музыке длительность измеряется не секундами и не минутами. Длительность в музыке измеряется ритмическими единицами, которые могут быть выражены счетом, например, раз, два, три, четыре. Про это подробно рассказано на странице о темпе, метре и ритме музыки.

Звук в музыке. Амплитуда звука.

Амплитуда, это размах колебания источника звука (например, струны). Чем больше размах колебаний, тем, говорят, больше их амплитуда. В прямой зависимости от амплитуды звука находится его громкость — чем больше амплитуда, тем больше громкость. Меньше амплитуда — меньше громкость. Кроме амплитуды на громкость влияет расстояние для источника звука — чем ближе источник звука, тем (при одинаковой амплитуде) громче он звучит. Ещё на громкость звука оказывает влияние особенность человеческого слуха — так при одинаковой амплитуде и расстоянии до источника звука, громче всего будут слышны звуки в среднем регистре.

Вот два примера, один и тот же тон. Погромче и потише:

На громкость звука оказывает влияние и такой фактор как вид колебаний. Колебания могут быть затухающими (удар по струне гитары). В этом случае вместе с угасанием колебаний будет затихать и звук струны. Могут быть и незатухающие колебания — в этом случае колебания поддерживаются искусственно, например, движением смычка по струне или пением. Для незатухающих колебаний громкость можно изменять (уменьшать, увеличивать или оставлять неизменной) в зависимости от художественных целей и задач.

Звук в музыке. Тембр звука.

Во всех последних примерах использовался звук от звукового генератора с частотой 440 Гц. Эта частота в примерах выбрана не случайно. 440 Гц — частота ноты ля первой октавы. Про октавы рассказано на странице звукоряда, а тут важно отметить следующее — хотя, у ноты ля реальных музыкальных инструментов такая же частота, как была установлена у генератора, но звучит нота ля и генератор по разному. Более того, у разных музыкальных инструментов нота ля звучит тоже не совсем одинаково. Именно поэтому мы безошибочно можем сказать, какой инструмент звучит:

это звуковой генератор:

а это фортепиано:

это скрипка:

а это флейта:

Почему же одна и та же нота звучит по-разному, хотя, высота звука одинакова? Дело в том, что когда звучит реальный музыкальный инструмент у него на основную частоту ноты накладываются дополнительные колебания. Когда звучит, например, струна генерируются сразу несколько колебаний:

  • основной тон (самый громкий) во всю длину струны и
  • обертоны — ряд колебаний в половину, в треть, в четверть и так далее струны. Амплитуда (громкость) обертонных колебаний уменьшается в ростом ступени «деления» струны.

К тому же, к основному тону и обертонам добавляются ещё и звуки колебаний частей корпуса музыкального инструмента. Всё это придает звуку особенную индивидуальную окраску, которую называют тембр звука. Тембр позволяет отличить на слух разные музыкальные инструменты.

Тембр присущ звукам не только музыкальных инструментов, но и человеческому голосу тоже. Поэтому мы легко отличаем голоса разных людей.

Человеческое ухо лучше всего воспринимает самый громкий (основной) тон в музыкальном звуке. Частичные тоны (обертоны) не воспринимаются как отдельные звуки, придают основному звуку определенный колорит сливаясь с ним. Обертоны, входящие в состав сложного звука называют гармониками или гармоническими составляющими. Распределение громкости между гармониками у разных инструментов не всегда такое линейное как в теории. Например у гобоя (духовой музыкальный инструмент) вторая гармоника громче основного тона, а третья громче второй и только у последующих гармоник громкость снижается.

На электронных музыкальных инструментах (синтезаторах), изменяя соотношения гармоник в сложном звуке, можно составить любую громкость обертонов и подобрать их так, чтобы имитировать звучание любых музыкальных инструментов. Если выделить первую, третью и пятую гармоники — зазвучит кларнет 🙂

Итак, мы рассмотрели природу звука в музыке и его характеристики: высоту, амплитуду, длительность и тембр.

Если статья была полезна, поддержите проект — поделитесь этой страницей с друзьями:

Для обучения игре на духовых музыкальных инструментах мы рекомендуем программу «Свирелька», которую получить можно здесь.

С помощью данного видеурока вы сможете изучить тему «Источники звука. Звуковые колебания. Высота, тембр, громкость». На этом занятии вы узнаете, что такое звук. Также мы рассмотрим диапазоны звуковых колебаний, воспринимаемые человеческим слухом. Определим, что может быть источником звука и какие необходимы условия для его возникновения. Также изучим такие характеристики звука, как высота, тембр и громкость.

Тема урока посвящена источникам звука, звуковым колебаниям. Поговорим мы и о характеристиках звука - высоте, громкости и тембре. Прежде чем говорить о звуке, о звуковых волнах, давайте вспомним, что механические волны распространяются в упругих средах. Часть продольных механических волн, которая воспринимается человеческими органами слуха, называется звуком, звуковыми волнами. Звук - это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения .

Опыты показывают, что человеческое ухо, органы слуха человека воспринимают колебания частотами от 16 Гц до 20000 Гц. Именно этот диапазон мы и называем звуковым. Конечно, существуют волны, частота которых меньше 16 Гц (инфразвук) и больше 20000 Гц (ультразвук). Но этот диапазон, эти разделы человеческим ухом не воспринимаются.

Рис. 1. Диапазон слышимости человеческого уха

Как мы говорили, области инфразвука и ультразвука человеческими органами слуха не воспринимаются. Хотя могут восприниматься, например, некоторыми животными, насекомыми.

Что такое ? Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц)

Рис. 2. Зажатая в тиски колеблющаяся линейка может быть источником звука

Обратимся к опыту и посмотрим, как образуется звуковая волна. Для этого нам потребуется металлическая линейка, которую мы зажмем в тиски. Теперь, воздействуя на линейку, мы сможем наблюдать колебания, но никакого звука не слышим. И тем не менее вокруг линейки создается механическая волна. Обратите внимание, когда линейка смещается в одну сторону, здесь образуется уплотнение воздуха. В другую сторону - тоже уплотнение. Между этими уплотнениями образуется разряжение воздуха. Продольная волна - это и есть звуковая волна, состоящая из уплотнений и разряжений воздуха . Частота колебаний линейки в данном случае меньше звуковой частоты, поэтому мы не слышим этой волны, этого звука. На основе опыта, который мы только что пронаблюдали, в конце XVIII века был создан прибор, который называется камертон.

Рис. 3. Распространение продольных звуковых волн от камертона

Как мы убедились, звук появляется в результате колебаний тела со звуковой частотой. Распространяются звуковые волны во все стороны. Между слуховым аппаратом человека и источником звуковых волн обязательно должна быть среда. Эта среда может газообразной быть, жидкой, твердой, но это обязательно должны быть частицы, способные передавать колебания. Процесс передачи звуковых волн должен обязательно происходить там, где есть вещество. Если вещества нет, никакого звука мы не услышим.

Для существования звука необходимы:

1. Источник звука

2. Среда

3. Слуховой аппарат

4. Частота 16-20000 Гц

5. Интенсивность

Теперь перейдем к обсуждению характеристик звука. Первая - это высота звука. Высота звука - характеристика, которая определяется частотой колебаний . Чем больше частота у тела, которое производит колебания, тем звук будет выше. Давайте вновь обратимся к линейке, зажатой в тиски. Как мы уже говорили, мы видели колебания, но не слышали звука. Если теперь длину линейки сделать меньше, то мы будем слышать звук, но увидеть колебания будет гораздо сложнее. Посмотрите на линейку. Если мы подействуем на нее сейчас, звука никакого мы не услышим, но зато наблюдаем колебания. Если укоротим линейку, мы услышим звук определенной высоты. Мы можем сделать длину линейки еще короче, тогда мы услышим звук еще большей высоты (частоты). То же самое мы можем пронаблюдать и с камертонами. Если мы возьмем большой камертон (он еще называется демонстрационный) и ударим по ножкам такого камертона, то можем пронаблюдать колебание, но звука не услышим. Если возьмем другой камертон, то, ударив по нему, услышим определенный звук. И следующий камертон, настоящий настроечный камертон, который используется для настройки музыкальных инструментов. Он издает звук, соответствующий ноте ля, или, как говорят еще, 440 Гц.

Следующая характеристика - тембр звука. Тембром называется окраска звука . Как можно проиллюстрировать эту характеристику? Тембр - это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами. Вы все знаете, что нот у нас всего семь. Если мы услышим одну и ту же ноту ля, взятую на скрипке и на фортепиано, то мы отличим их. Мы сразу сможем сказать, какой инструмент этот звук создал. Именно эту особенность - окраску звука - и характеризует тембр. Нужно сказать, что тембр зависит от того, какие воспроизводятся звуковые колебания, кроме основного тона. Дело в том, что произвольные звуковые колебания довольно сложные. Они состоят из набора отдельных колебаний, говорят спектра колебаний . Именно воспроизведение дополнительных колебаний (обертонов) и характеризует красоту звучания того или иного голоса или инструмента. Тембр является одним из основных и ярких проявлений звука.

Еще одна характеристика - громкость. Громкость звука зависит от амплитуды колебаний . Давайте посмотрим и убедимся, что громкость связана с амплитудой колебаний. Итак, возьмем камертон. Сделаем следующее: если ударить по камертону слабо, то амплитуда колебаний будет небольшая и звук будет тихий. Если теперь по камертону ударить сильнее, то и звук гораздо громче. Это связано с тем, что амплитуда колебаний будет гораздо больше. Восприятие звука - вещь субъективная, зависит от того, каков слуховой аппарат, каково самочувствие человека.

Список дополнительной литературы:

А так ли хорошо знаком вам звук? // Квант. — 1992. — № 8. — C. 40-41. Кикоин А.К. О музыкальных звуках и их источниках // Квант. — 1985. — № 9. — С. 26-28. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.

Обратимся ещё раз к опыту, изображённому на рисунке 74. Как уже говорилось, свободная часть линейки создаёт звук только в том случае, если она колеблется с частотой, не меньшей чем 16 Гц. Переместим линейку в тисках вниз (укоротив тем самым верхнюю часть) и приведём её в колебательное движение. Заметим, что частота колебаний линейки увеличилась, а издаваемый ею звук стал выше. Продолжая периодически укорачивать колеблющуюся часть линейки, убедимся в том, что с увеличением частоты колебаний звук повышается.

Проверим этот вывод на другом опыте. Возьмём зубчатый диск (рис. 79, а), с помощью специального устройства приведём его во вращение и прикоснёмся к зубчатому краю тонкой картонной пластинкой (рис. 79, б). Под воздействием зубьев вращающегося диска пластинка начнёт совершать вынужденные колебания, в результате чего мы услышим звук. Увеличим скорость вращения диска, и пластинка станет колебаться чаще, а издаваемый ею звук будет выше.

Рис. 79. Исследование зависимости высоты звука от частоты колебаний источника

На основании описанного опыта можно заключить, что высота звука зависит от частоты колебаний: чем больше частота колебаний источника звука, тем выше издаваемый им звук.

Напомним, что ветви камертона совершают гармонические (синусоидальные) колебания, которые являются самым простым видом колебаний. Таким колебаниям присуща только одна строго определённая частота. Звук камертона является чистым тоном.

  • Чистым тоном называется звук источника, совершающего гармонические колебания одной частоты

Звуки от других источников (например, звуки различных музыкальных инструментов, голоса людей, звук сирены и многие другие) представляют собой совокупность гармонических колебаний разных частот, т. е. совокупность чистых тонов.

Самая низкая (т. е. самая малая) частота такого сложного звука называется основной частотой, а соответствующий ей звук определённой высоты - основным тоном (иногда его называют просто тоном). Высота сложного звука определяется именно высотой его основного тона.

Все остальные тоны сложного звука называются обертонами. Частоты всех обертонов данного звука в целое число раз больше частоты его основного тона (поэтому их называют также высшими гармоническими тонами).

Обертоны определяют тембр звука, т. е. такое его качество, которое позволяет нам отличать звуки одних источников от звуков других. Например, мы легко отличаем звук рояля от звука скрипки даже в том случае, если эти звуки имеют одинаковую высоту, т. е. одну и ту же частоту основного тона. Отличие же этих звуков обусловлено разным набором обертонов (совокупность обертонов различных источников может отличаться количеством обертонов, их амплитудами, сдвигом фаз между ними, спектром частот).

Таким образом, высота звука определяется частотой его основного тона: чем больше частота основного тона, тем выше звук.

Тембр звука определяется совокупностью его обертонов.

Чтобы выяснить, от чего зависит громкость звука, вернёмся к опыту, изображённому на рисунке 76. К одной ветви камертона подводят вплотную маленький висящий на нити шарик, а по другой слегка ударяют молоточком. Обе ветви камертона приходят в колебательное движение. Слышен негромкий звук. Шарик отскакивает от колеблющейся ветви на небольшое расстояние. Затем камертон глушат и снова ударяют по нему, но гораздо сильнее, чем в первый раз. Теперь камертон звучит громче, а шарик отскакивает на большее расстояние, что свидетельствует о большей амплитуде колебаний ветвей.

Этот и многие другие опыты позволяют сделать вывод о том, что громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук.

В рассмотренном опыте частоты колебаний обоих звуков - тихого и громкого - одинаковы, так как их источником является один и тот же камертон. Но если сравнить звуки разных частот, то кроме амплитуды колебаний пришлось бы учитывать ещё один фактор, влияющий на громкость. Дело в том, что чувствительность человеческого уха к звукам разной частоты различна. При одинаковых амплитудах как более громкие воспринимаются звуки, частоты, которых лежат в пределах от 1000 до 5000 Гц. Поэтому, например, высокий женский голос с частотой 1000 Гц будет для нашего уха громче низкого мужского с частотой 200 Гц, даже если амплитуды колебаний голосовых связок в обоих случаях одинаковы. Громкость звука зависит также от его длительности и от индивидуальных особенностей слушателя.

  • При равных амплитудах женский голос, имеющий большую частоту, чем мужской, воспринимается как более громкий

Громкость звука - это субъективное качество слухового ощущения, позволяющее располагать все звуки по шкале от тихих до громких.

Единица громкости звука называется сон. В практических задачах громкость звука принято характеризовать уровнем звукового давления, измеряемым в белах (Б) или децибелах (дБ), составляющих десятую часть бела.

Например, звуку, возникающему при листании газеты, соответствует уровень звукового давления порядка 20 дБ, звуку звонка будильника - примерно 80 дБ, двигателя самолёта - порядка 130 дБ (такой громкий звук вызывает у человека болевое ощущение).

Систематическое воздействие на человека громких звуков, особенно шумов (совокупности звуков разной громкости, высоты тона, тембра), неблагоприятно отражается на его здоровье.

В шумных районах у многих людей появляются симптомы шумовой болезни: повышенная нервная возбудимость, быстрая утомляемость, повышенное артериальное давление. Поэтому в больших городах приходится принимать специальные меры для уменьшения шумов, например запрещать звуковые сигналы автомобилей.

Вопросы

  • С какой целью проводились опыты, изображённые на рисунках 74 и 79? Какой был сделан вывод по результатам этих опытов?
  • Как на опыте удостовериться в том, что из двух камертонов более высокий звук издаёт тот, у которого больше собственная частота? (Частоты на камертонах не указаны.)
  • От чего зависит высота звука?
  • Как изменится громкость звука, если уменьшить амплитуду колебаний его источника?
  • Звук какой частоты - 500 Гц или 3000 Гц - человеческое ухо воспримет как более громкий при одинаковых амплитудах колебаний источников этих звуков?
  • От чего зависит громкость звука?
  • Как отражается на здоровье человека систематическое действие громких звуков?

Упражнение 29

  • Какое насекомое чаще машет крыльями в полёте - шмель, комар или муха? Почему вы так думаете?
  • Зубья вращающейся циркулярной пилы создают в воздухе звуковую волну. Как изменится высота звука, издаваемого пилой при её холостом ходе, если на ней начать распиливать толстую доску из плотной древесины? Почему?
  • Известно, что чем туже натянута струна на гитаре, тем более высокий звук она издаёт. Как изменится высота звучания гитарных струн при значительном повышении температуры окружающего воздуха? Ответ поясните.

Высота звука

Высота звука - свойство звука, определяемое человеком на слух и зависящее в основном от его частоты , т. е. от числа колебаний среды (обычно воздуха) в секунду, которые воздействуют на барабанную перепонку . С увеличением частоты колебаний растёт высота звука. В первом приближении субъективная высота звука пропорциональна логарифму частоты - согласно закону Вебера-Фехнера . Звук, обладающий определённой высотой, в музыке называется тоном.

Основные сведения

Высота звука - субъективное качество слухового ощущения, наряду с громкостью и тембром , позволяющее располагать все звуки по шкале от низких к высоким. Для чистого тона она зависит главным образом от частоты (с ростом частоты высота звука повышается), но при субъективном восприятии также и от его интенсивности - при возрастании интенсивности высота звука кажется ниже . Высота звука со сложным спектральным составом зависит от распределения энергии по шкале частот.

Единицами измерения высоты звука в музыке являются тон , полутон , цент .

Также высоту звука измеряют в мелах - шкале высот, разность между которыми слушатель воспринимает как равную. Тону с частотой 1 кГц и звуковым давлением 2·10 −3 Па приписывают высоту 1000 мел; в диапазоне 20 Гц - 9000 Гц укладывается около 3000 мел. Измерение высоты произвольного звука основано на способности человека устанавливать равенство высот двух звуков или их отношение (во сколько раз один звук выше или ниже другого).

Измерение

Высота звука измеряется по относительной шкале: октавы, внутри октав - ноты. Октава - это музыкальный интервал, соответствующий отношению частот двух звуков, равному 2. (То есть для ноты с тем же названием в следующей октаве частота, выраженная в герцах, будет ровно в 2 раза выше, чем в текущей октаве).

Внутри октавы наименьший музыкальный интервал - полутон (музыкальный интервал между двумя ближайшими нотами в октаве, приблизительно соответствующий отношению частот двух звуков, равному . «Приблизительно», потому что в природе ноты внутри октавы расположены неравномерно (см. Пифагорейский строй , комма).

Соответствие нот в октавах конкретным частотам (в герцах) задаётся стандартами.

Во всём диапазоне значений высот их получить можно с помощью интервалов между короткими импульсами, например одиночными отсчётами интенсивности в дискретном времени t = ndt, где dt =22,7 мкс.

Звук с кажущейся постоянно повышающейся или понижающейся высотой - один из видов акустических иллюзий - называется тоном Шепарда .

Частотные сигналы сложного спектра без основной частоты (первой гармоники в спектре) называются резидуальными. Восприятие высоты частотного сигнала совпадает с восприятием высоты резидуальной версии такого же сигнала.

Примечания

Литература

  • Газарян С. В мире музыкальных инструментов: Кн. для учащихся ст. классов. - 2-е изд. - М.: Просвещение, 1989. - 192 с.: ил.

См. также

  • Критическая полоса слуха
  • Изменение высоты звука (англ. )

Wikimedia Foundation . 2010 .

Смотреть что такое "Высота звука" в других словарях:

    Форма восприятия человеком частоты колебаний звучащего тела. С ростом частоты высота звука увеличивается. * * * ВЫСОТА ЗВУКА ВЫСОТА ЗВУКА, качество звука, форма восприятия человеком частоты колебаний звучащего тела. С ростом частоты высота звука… … Энциклопедический словарь

    высота звука - субъективное качество звуков, обусловленное их частотой. По частоте звуки могут определяться как низкие или высокие. Словарь практического психолога. М.: АСТ, Харвест. С. Ю. Головин. 1998. высота звука … Большая психологическая энциклопедия

    Качество звука, форма восприятия человеком частоты колебаний звучащего тела. С ростом частоты высота звука увеличивается … Большой Энциклопедический словарь

    Качество звука, определяемое человеком субъективно на слух и зависящее в осн. от частоты звука. С ростом частоты В. з. увеличивается (т. е. звук становится «выше»), с уменьшением частоты понижается. В небольших пределах В. з. изменяется также в… … Физическая энциклопедия

    Субъективное качество звуков, обусловленное их частотой, т.е. числом колебаний в секунду. На этом основании звуки могут быть определены как низкие или высокие. В качестве единицы высоты звука выступает мел … Психологический словарь

    Высота звука - характеристика слухового восприятия, позволяющая распределить звуки по шкале от низких до высоких частот. Зависит преимущественно от частоты, но также от величины звукового давления и формы волны звука … Российская энциклопедия по охране труда

    высота звука - Качественная характеристика звука по частоте колебаний, определяемая органолептическим методом при помощи слуха. [ГОСТ 24415 80] Тематики пианино … Справочник технического переводчика

    ВЫСОТА ЗВУКА - ВЫСОТА ЗВУКА. Субъективная характеристика восприятия звуков, определяемая их частотой (числом колебаний в единицу времени). Эта количественная характеристика слухового ощущения позволяет расположить звуки от низких к высоким. См. слух, тембр.… … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    Если малыша, конечно такого, который слышал раньше, как играют на рояле, видел вблизи клавиши, попросить изобразить на инструменте птичку, то он начнет быстро перебирать клавиши на правой стороне клавиатуры, чтобы получить высокие звуки. Если же… … Музыкальный словарь

    высота звука - зависит не только от частоты основного тона, но и от ряда дополнительных факторов, таких, как громкость, длительность и спектральный состав звучания. Высота звука сложного сигнала определяется самой низкой (основной) частотой, или присутствующей… … Русский индекс к Англо-русскому словарь по музыкальной терминологии