Классификация органических веществ – основа изучения органической химии. Классификация и номенклатура органических веществ (тривиальная и международная)

Казахский Гуманитарно-Юридический Инновационный Университет

Кафедра: Информационных технологий и экономики

На тему: «Классификация органических соединений. Виды связи. Специфические свойства органических соединений. Структурные формулы. Изомерия.»

Выполнил: Студент I-го курса, группа Э-124

Увашов Азамат

Проверила: Абылкасымова Б. Б

г.Семей 2010 год

1. Введение

2. Классификация органических соединений

3. Виды связи

4. Структурные формулы

5. Специфические свойства органических соединений

6. Изомерия

Введение

Трудно представить прогресс в какой бы то ни было области хозяйства без химии – в частности, без органической химии. Все сферы хозяйства связаны с современной химической наукой и технологией.

Органическая химия изучает вещества, содержащие в своем составе углерод, за исключением окиси углерода, углекислого газа и солей угольной кислоты (эти соединения по свойствам ближе к неорганическим соединениям).

Как наука органическая химия до середины XVIII века не существовала. К тому времени различали три вида химии: химию животных, растительную и минеральную. Химия животных изучала вещества, входящие в состав животных организмов; растительная – вещества, входящие в состав растений; минеральная – вещества, входящие в состав неживой природы. Этот принцип, однако, не позволял отделить органические вещества от неорганических. Например, янтарная кислота относилась к группе минеральных веществ, так как ее получали перегонкой ископаемого янтаря, поташ входил в группу растительных веществ, а фосфат кальция – в группу животных веществ, так как их получали прокаливанием соответственно растительных (древесина) и животных (кости) материалов.

В первой половине XIX века было предложено выделить соединения углерода в самостоятельную химическую дисциплину – органическую химию.

Среди ученых в то время господствовало виталистическое мировоззрение, согласно которому органические соединения образуются только в живом организме под влиянием особой, сверхъестественной "жизненной силы". Это означало, что получить органические вещества путем синтеза из неорганических невозможно, что между органическими и неорганическими соединениями лежит непреодолимая пропасть. Витализм настолько укрепился в умах ученых, что долгое время не предпринималось никаких попыток синтеза органических веществ. Однако витализм был опровергнут практикой, химическим экспериментом.

Развитие органической химии в настоящее время достигло уровня, позволяющего начать решение такой основополагающей проблемы органической химии, как проблема количественного соотношения структуры вещества и его свойства, в качестве которого может выступать любое физическое свойство, биологическая активность любого строго заданного типа решение задач такого типа осуществляется с использованием математических методов.

Классификация органических соединений.

Огромное количество органических соединений классифицируют с учетом строения углеродной цепи (углеродного скелета) и наличия в молекуле функциональных групп.

На схеме представлена классификация органических соединений в зависимости от строения углеродной цепи.

Органические соединения

Ациклические (алифатические)

(соединения с открытой цепью)

Циклические

(соединения с замкнутой цепью)

Насыщенные (предельные)

Ненасыщенные (непредельные)

Карбоциклические (цикл состоит только из атомов углерода)

Гетероциклические (цикл состоит из атомов углерода и других элементов)

Алициклические (алифатические циклические)

Ароматические

В качестве основы при классификации приняты углеводороды, их считают базовыми соединениями в органической химии. Все остальные органические соединения рассматривают как их производные.

При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода.

I. АЛИФАТИЧЕСКИЕ (aleiphatos. греч. масло) углеводороды представляют собой линейные или разветвленные цепочки и не содержат циклических фрагментов, они образуют две крупные группы.

1. Предельные или насыщенные углеводороды (названы так потому, что не способны что-либо присоединять) представляют собой цепочки атомов углерода, соединенных простыми связями и окруженных атомами водорода. В том случае, когда цепочка имеет разветвления, к названию добавляют приставку изо . Простейший насыщенный углеводород – метан, с него начинается ряд этих соединений.

НАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

ОБЪЕМНЫЕ МОДЕЛИ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ. Валентности углерода направлены к вершинам мысленного тетраэдра, в результате цепочки насыщенных углеводородов представляют собой не прямые, а ломаные линии.

Основные источники насыщенных углеводородов – нефть и природный газ. Реакционная способность насыщенных углеводородов очень низкая, они могут реагировать только с наиболее агрессивными веществами, например, с галогенами или с азотной кислотой. При нагревании насыщенных углеводородов выше 450 С° без доступа воздуха разрываются связи С-С и образуются соединения с укороченной углеродной цепью. Высокотемпературное воздействие в присутствии кислорода приводит к их полному сгоранию до СО 2 и воды, что позволяет эффективно использовать их в качестве газообразного (метан – пропан) или жидкого моторного топлива (октан).

При замещении одного или нескольких атомов водорода какой-либо функциональной (т.е. способной к последующим превращениям) группой образуются соответствующие производные углеводородов. Соединения, содержащие группировку С-ОН, называют спиртами, НС=О – альдегидами, СООН – карбоновыми кислотами (слово «карбоновая» добавляют для того, чтобы отличить их от обычных минеральных кислот, например, соляной или серной). Соединение может содержать одновременно различные функциональные группы, например, СООН и NH 2 , такие соединения называют аминокислотами. Введение в состав углеводорода галогенов или нитрогрупп приводит соответственно к галоген- или нитропроизводным.

НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ в виде объемных моделей. Валентности двух атомов углерода, соединенных двойной связью, расположены в одной плоскости, что можно наблюдать при определенных углах поворота, в этот момент вращение молекул приостанавливается.

Наиболее характерно для ненасыщенных углеводородов присоединение по кратной связи, что позволяет синтезировать на их основе разнообразные органические соединения.

АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ . Из-за определенной направленности связей у атома углерода молекула циклогексана представляет собой не плоский, а изогнутый цикл – в форме кресла (/ - /), что отчетливо видно при определенных углах поворота (в этот момент вращение молекул приостанавливается)

Помимо показанных выше существуют иные варианты соединения циклических фрагментов, например, они могут иметь один общий атом, (так называемые, спироциклические соединения), либо соединяться таким образом, чтобы два или более атомов были общими для обоих циклов (бициклические соединения), при объединении трех и более циклов возможно также образование углеводородных каркасов.

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ . Их названия сложились исторически, например, фуран получил название от фуранового альдегида – фурфурола, получаемого из отрубей (лат. furfur – отруби). Для всех показанных соединений реакции присоединения затруднены, а реакции замещения проходят достаточно легко. Таким образом, это ароматические соединения небензольного типа.

Ароматический характер этих соединений подтверждается плоским строением циклов, что отчетливо заметно в тот момент, когда их вращение приостанавливается

Разнообразие соединений этого класса увеличивается дополнительно за счет того, что гетероцикл может содержать два и более гетероатомов в цикле

ВИДЫ СВЯЗИ

Химическая связь - это взаимодействие частиц (атомов, ионов), осуществляемое путем обмена электронами. Различают несколько видов связи.
При ответе на данный вопрос следует подробно остановиться на характеристике ковалентной и ионной связи.
Ковалентная связь образуется в результате обобществления электронов (с образованием общих электронных пар), которое происходит в ходе перекрывания электронных облаков. В образовании ковалентной связи участвуют электронные облака двух атомов.
Различают две основные разновидности ковалентной связи:

а) неполярную и б) полярную.

а) Ковалентная неполярная связь образуется между атомами неметалла одного и того химического элемента. Такую связь имеют простые вещества, например О 2 ; N 2 ; C 12 . Можно привести схему образования молекулы водорода: (на схеме электроны обозначены точками).
б) Ковалентная полярная связь образуется между атомами различных неметаллов.

Схематично образование ковалентной полярной связи в молекуле НС1 можно изобразить так:

Общая электронная плотность оказывается смещенной в сторону хлора, в результате чего на атоме хлора возникает частичный отрицательный заряд , а на атоме водорода - частичный положительный . Таким образом, молекула становится полярной:

Ионной называется связь между ионами, т. е. заряженными частицами, образовавшимися из атома или группы атомов в результате присоединения или отдачи электронов. Ионная связь характерна для солей и щелочей.

Сущность ионной связи лучше рассмотреть на примере образования хлорида натрия. Натрий, как щелочной металл, склонен отдавать электрон, находящийся на внешнем электронном слое. Хлор же, наоборот, стремится присоединить к себе один электрон. В результате натрий отдает свой электрон хлору. В итоге образуются противоположно заряженные частицы - ионы Na + и Сl - , которые притягиваются друг к другу. При ответе следует обратить внимание, что вещества, состоящие из ионов, образованы типичными металлами и неметаллами. Они представляют собой ионные кристаллические вещества, т. е. вещества, кристаллы которых образованы ионами, а не молекулами.

После рассмотрения каждого вида связи следует перейти к их сравнительной характеристике.

Для ковалентной неполярной, полярной и ионной связи общим является участие в образовании связи внешних электронов, которые еще называют валентными. Различие же состоит в том, насколько электроны, участвующие в образовании связи, становятся общими. Если эти электроны в одинаковой мере принадлежат обоим атомам, то связь ковалентное неполярная; если эти электроны смещены к одному атому больше, чем другому, то связь ковалентная полярная. В случае, если электроны, участвующие в образовании связи, принадлежат одному атому, то связь ионная.

Металлическая связь - связь между ион-атомами в кристаллической решетке металлов и сплавах, осуществляемая за счет притяжения свободно перемещающихся (по кристаллу) электронов (Mg, Fe).

Все вышеперечисленные отличия в механизме образования связи объясняют различие в свойствах веществ с разными видами связей.

СТРУКТУРНАЯ ФОРМУЛА

Структурная формула - это разновидность химической формулы, графически описывающая расположение и порядок связи атомов в соединении, выраженное на плоскости. Связи в структурных формулах обозначаются валентными черточками.

Часто используются структурные формулы, где связи с атомами водорода не обозначаются валентными черточками (тип 2). В другом типе структурных формул (скелетных), применяемых для крупных молекул в органической химии, не указываются атомы водорода связанные с углеродными атомами и не обозначаются атомы углерода (тип 3).

С помощью разных типов условных обозначений, используемых в структурных формулах, указываются также координационные связи, водородные связи, стереохимия молекул, делокализованные связи, локализация зарядов и т.д.

СПЕЦИФИЧЕСКИЕ СВОЙСТВА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакции органических соединений имеют некоторые специфические особенности. В реакциях неорганических соединений обычно участвуют ионы; эти реакции протекают очень быстро, иногда мгновенно при нормальной температуре. В реакциях органических соединений обычно участвуют молекулы; при этом одни ковалентные связи разрываются, а другие образуются. Такие реакции протекают медленнее ионных (например, десятки часов), и для их ускорения часто требуется повысить температуру или добавить катализатор. Наиболее часто используют в качестве катализаторов кислоты и основания. Обычно протекает не одна, а несколько реакций, так что выход нужного продукта очень часто составляет менее 50%. В связи с этим в органической химии употребляют не химические уравнения, а схемы реакций без указания стехиометрических соотношений.

Реакции органических соединений могут протекать очень сложным образом и вовсе не обязательно соответствовать простейшей относительной записи. Как правило, простая стехиометрическая реакция на самом деле происходит в несколько последовательных стадий. В качестве промежуточных соединений (интермедиатов) в многостадийных процессах могут возникать карбкатионы R+, карбанионы R-, свободные радикалы, карбены: СХ2, катион-радикалы (например, анион-радикалы (например, Аr) и другие нестабильные частицы, живущие доли секунды. Подробное описание всех изменений, которые происходят на молекулярном уровне в процессе превращения реагентов в продукты, называется механизмом реакции.

Исследование влияния строения органических соединений на механизм их реакций изучает физическая органическая химия, основы которой заложили К.Инголд, Робинсон и Л.Гаммет (1930-е гг.).

Реакции органических соединений могут классифицированы в зависимости от способа разрыва и образования связей, метода возбуждения реакции, ее молекулярности и др.

ИЗОМЕРИЯ

ИЗОМЕРИЯ (греч. isos – одинаковый, meros – часть) – одно из важнейших понятий в химии, главным образом, в органической. Вещества могут иметь одинаковый состав и молекулярную массу, но различное строение и соединения, содержащие в своем составе одни и те же элементы в одинаковом количестве, но различающиеся пространственным расположением атомов или групп атомов, называют изомерами. Изомерия является одной из причин того, что органические соединения так многочисленны и разнообразны.

Изомерия была впервые обнаружена Ю.Либихом в 1823, который установил, что серебряные соли гремучей и изоциановой кислот: Ag-О-N=C и Ag-N=C=O имеют одинаковый состав, но разные свойства. Термин «Изомерия» в 1830 ввел И.Берцелиус, предположивший, что различия в свойствах соединений одинакового состава возникают из-за того, что атомы в молекуле расположены в неодинаковом порядке. Представления об изомерии окончательно сформировались после создания A.M.Бутлеровым теории химического строения (1860-е). Основываясь на положениях этой теории, он предположил, что должно существовать четыре различных бутанола. К моменту создания теории был известен лишь один бутанол (СН 3)2СНСН 2 ОН, получаемый из растительного сырья.

Последовавший затем синтез всех изомеров бутанола и определение их свойств стали убедительным подтверждением теории.

Согласно современному определению два соединения одинакового состава считают изомерами, если их молекулы нельзя совместить в пространстве так, чтобы они полностью совпадали. Совмещение, как правило, проделывают мысленно, в сложных случаях используют пространственные модели, либо расчетные методы. Есть несколько причин возникновения изомерии.

Структурная изомерия

Обусловлена, как правило, различиями в строении углеводородного скелета либо неодинаковым расположением функциональных групп или кратных связей.

Изомерия углеводородного скелета. Насыщенные углеводороды, содержащие от одного до трех атомов углерода (метан, этан, пропан), не имеют изомеров. Для соединения с четырьмя атомами углерода С 4 Н 10 (бутан) возможно существование двух изомеров, для пентана С 5 Н 12 – трех изомеров, для гексана С 6 Н 14 – пяти

С увеличением числа атомов углерода в молекуле углеводорода количество возможных изомеров резко возрастает. Для гептана С 7 Н 16 существует девять изомеров, для углеводорода С 14 Н 30 – 1885 изомеров, для углеводорода С 20 Н 42 – свыше 366 000.

В сложных случаях вопрос о том, являются ли два соединения изомерами, решают, используя различные повороты вокруг валентных связей (простые связи это допускают, что в определенной степени соответствует их физическим свойствам). После перемещения отдельных фрагментов молекулы (не допуская при этом разрыва связей) накладывают одну молекулу на другую. Если две молекулы полностью совпадают, то это не изомеры, а одно и то же соединение:

Изомеры, отличающиеся структурой скелета, обычно имеют разные физические свойства (температура плавления, температура кипения и т.п.), что позволяет отделить один от другого. Изомерия такого типа существует и у ароматических углеводородов.

Самая простая классификация заключается в том. что все известные вещества делят на неорганические и органические . К органическим веществам относят углеводороды и их производные. Все остальные вещества - неорганические.

Неорганические вещества по составу делят на простые и сложные .

Простые вещества состоят из атомов одного химического элемента и подразделяются на металлы, неметаллы, благородные газы. Сложные вещества состоят из атомов разных элементов, химически связанных друг с другом.

Сложные неорганические вещества по составу и свойствам распределяют по следующим важнейшим классам: оксиды, основания, кислоты, амфотерные гидроксиды, соли.

  • Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых - кислород со степенью окисления (-2). Общая формула оксидов: Э m О n , где m - число атомов элемента Э, а n - число атомов кислорода. Оксиды, в свою очередь, классифицируют на солеобразующие и несолеобрадующие. Солеобразующие делятся на основные, амфотерные, кислотные, которым соответствуют основания, амфотерные гидроксиды, кислоты соответственно.
  • Основные оксиды - это оксиды металлов в степенях окисления +1 и +2. К ним относятся:
    • оксиды металлов главной подгруппы первой группы (щелочные металлы ) Li - Fr
    • оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы ) Mg - Ra
    • оксиды переходных металлов в низших степенях окисления
  • Кислотные оксиды -образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 , SiO 2 , CrO 3 и Mn 2 O 7). Исключение: у оксидов NO 2 и ClO 2 нет соответствующих кислотных гидроксидов, но их считают кислотными.
  • Амфотерные оксиды -образованы амфотерными металлами со С.О. +2, +3,+4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО).
  • Несолеобразующие оксиды - оксиды неметаллов со С.О.+1, +2 (СО, NO, N 2 O, SiO).
  • Основания - это сложные вещества, состоящие из атомов металла и одной или нескольких гидроксогрупп (-ОН). Общая формула оснований: М(ОН) у, где у - число гидроксогрупп, равное степени окислении металла М (как правило, +1 и +2). Основания делятся на растворимые (щелочи) и нерастворимые.
  • Кислоты -(кислотные гидроксиды)- это сложные вещества, состоящие из атомов водорода, способных замещаться на атомы металла, и кислотных остатков. Общая формула кислот: Н х Ас, где Ас - кислотный остаток (от английского «acid» - кислота), х - число атомов водорода, равное заряду иона кислотного остатка.
  • Амфотерные гидроксиды - это сложные вещества, которые проявляют и свойства кислот, и свойства оснований. Поэтому формулы амфотерных гидроксидов можно записывать и в форме кислот, и в форме оснований.
  • Соли - это сложные вещества, состоящие из катионов металла и анионов кислотных остатков. Такое определение относится к средним солям.
  • Средние соли - это продукты полного замещения атомов водорода в молекуле кислоты атомами металла или полного замещения гидроксогрупп в молекуле основания кислотными остатками.
  • Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия. Нужно помнить, что кислые соли могут образовывать только двух и более основные кислоты.
  • Осно́вные соли - гидроксогруппы основания (OH −) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН – групп, входящих в состав соли.Например, (CuOH) 2 CO 3 – гидроксокарбонат меди (II).Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.
  • Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Например, KAl(SO 4) 2 , KNaSO 4.
  • Смешанные соли - в их составе присутствует два различных аниона. Например, Ca(OCl)Cl.
  • Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды. Пример: Na 2 SO 4 ·10H 2 O.

Классификация органических веществ

Соединения, состоящие только из атомов водорода и углерода, называют углеводородами . Прежде чем начать данный раздел, запомни, для упрощения записи, химики не расписывают в цепочках углероды и водороды, однако не забывай что углерод образует четыре связи, и если на рисунке углерод связан двумя связями, то еще двумя он связан с водородами, хоть последнее и не указано:

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения и гетероциклические .

Карбоциклическне соединения , в свою очередь, включают два ряда соединений: алициклические и ароматические .

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой π-электронов. образующих общую π-систему (единое π-электронное облако).

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными), в отличие от предельных (насыщенных), содержащих только одинарные связи.

Пи-связь (π-связь) - ковалентная связь, образующаяся перекрыванием p-атомных орбиталей. В отличие от сигма-связи, осуществляемой перекрыванием s-атомных орбиталей вдоль линии соединения атомов, пи-связи возникают при перекрывании p-атомных орбиталей по обе стороны от линии соединения атомов.

В случае образования ароматической системы, например, бензола C6H6, каждый из шести атомов углерода находится в состоянии sp2 - гибридизации и образует три сигма-связи с валентными углами 120 °. Четвёртый p-электрон каждого атома углерода ориентируется перпендикулярно к плоскости бензольного кольца. В целом возникает единая связь, распространяющаяся на все атомы углерода бензольного кольца. Образуются две области пи-связей большой электронной плотности по обе стороны от плоскости сигма-связей. При такой связи все атомы углерода в молекуле бензола становятся равноценными и, следовательно, подобная система более устойчива, чем система с тремя локализованными двойными связями.

Предельные алифатические углеводороды называют алканами, они имеют общую формулу С n Н 2n + 2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины:

Непредельные алифатические углеводороды с одной тройной связью называют алкинами. Их общая формула С n Н 2n — 2

Предельные алициклические углеводороды - циклоалканы, их общая формула С n Н 2n:

Мы рассмотрели классификацию углеводородов. Но если в этих молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов: галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Атомы или группы атомов, которые определяют самые характерные свойства данного класса веществ, называются функциональными группами.

Углеводороды в их производные с одной и той же функциональной группой образуют гомологические ряды.

Гомологическим рядом называют ряд соединений, принадлежащих к одному классу (гомологов), по отличающихся друг от друга по составу на целое число групп -СН 2 - (гомологическую разность), имеющих сходное строение и, следовательно, сходные химические свойства.

Сходство химических свойств гомологов значительно упрощает изучение органических соединений.

Замещенные углеводороды

  • Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ли-, три- (в общем случае поли-) галогенопроизводные.Общая формула галогенопроизводных предельных углеводородов R-Г.К кислородсодержащим органическим веществам относят спирты, фенолы, альдегиды, кетоны, карбоновые кислоты, простые и сложные эфиры.
  • Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.Спирты называют одноатомными, если они имеют одну гидроксильную группу, и предельными, если они - производные алканов.Общая формула предельных одноатомных спиртов: R-ОН.
  • Фенолы - производные ароматических углеводородов (ряда бензола), в котором один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.
  • Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.
  • Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенные атомом кислорода: R=О-R или R-О-R 2 .Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2n +2O.
  • Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.
  • Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .
  • Амины - соединения, которые рассматривают как производные аммиака, в котором атомы водорода замещены на углеводородные радикалы.В зависимости от природы радикала амины могут быть алифатическими. В зависимости от числа замещенных на радикалы атомов водорода различают первичные амины, вторичные, третичные. В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми. Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу. Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом, - аминогруппу -NH 2 и карбоксил -СOОН.

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др. В настоящее время известно также много соединений, которые можно отнести и к органическим, и к неорганическим. Их называют элементоорганическими соединениями. Некоторые из них можно рассматривать как производные углеводородов.

Номенклатура

Для названия органических соединений используют 2 номенклатуры – рациональную и систематическую (ИЮПАК) и тривиальные названия .


Составление названий по номенклатуре ИЮПАК:

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);

Ен (при наличии двойной связи);

Ин (при наличии тройной связи).


Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:

СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3

бутен-1 бутен-2

СН 2 =СН–СН=СН 2

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.


Порядок составления названия

Химический язык, в состав которого в качестве одной из наиболее специфических частей входит химическая символика (включающая и химические формулы), является важным активным средством познания химии и требует поэтому четкого и осознанного применения.

Химические формулы — это условные изображения состава и строения химически индивидуальных веществ посредством химических символов, индексов и других знаков. При изучении состава, химического, электронного и пространственного строения веществ, их физических и химических свойств, изомерии и других явлений применяют химические формулы разных видов.

Особенно много видов формул (простейшие, молекулярные, структурные, проекционные, конформационные и др.) применяют при изучении веществ молекулярного строения — большинства органических веществ и сравнительно небольшой части неорганических веществ при обычных условиях. Значительно меньше видов формул (простейшие) применяют при изучении немолекулярных соединений, строение которых более наглядно отражают шаростержневые модели и схемы кристаллических структур или их элементарных ячеек.


Составление полных и кратких структурных формул углеводородов

Пример:

Составить полную и краткую структурные формулы пропана С 3 Н 8 .

Решение:

1. Записать в строчку 3 атома углерода, соединить их связями:

С–С–С

2. Добавить черточки (связи) так, чтобы от каждого атома углерода отходило 4 связи:

4. Записать краткую структурную формулу:

СН 3 –СН 2 –СН 3

Таблица растворимости

В основу классификации органических соединений положена теория химического строения А. М. Бутлерова. Систематическая классификация - фундамент научной номенклатуры. Благодаря ей стало возможным дать название каждому известному ранее и новому органическому веществу, исходя из имеющейся

Классы органических соединений

Классифицируются по двум основным признакам: локализации и количеству функциональных групп в молекуле и структуре карбонового скелета.

Карбоновый скелет представляет собой часть молекулы, которая достаточно стабильна в различных химических реакциях. Органические соединения разделяются на большие группы, при этом учитывают органического вещества.

Ациклические соединения (биосоединения жирного ряда или алифатические соединения). Указанные органические соединения в структуре молекул содержат прямую или разветвленную карбоновую цепь.

Карбоциклические соединения - это вещества с замкнутыми карбоновыми цепями - циклами. Указанные биосоединения разделяют на группы: ароматические и алициклические.

Гетероциклические природные органические соединения - вещества, в структуре молекул которых есть циклы, образованные атомами карбона и атомами других химических элементов (Оксигена, Нитрогена, Сульфура) гетероатомами.

Соединения каждого ряда (группы) делятся на классы различных органических соединений. Принадлежность органического вещества к тому или иному классу определяют наличием в его молекуле определенных функциональных групп. Например, классы углеводородов (единственный класс органических веществ у которых отсутствуют функциональные группы), аминов, альдегидов, фенолов, карбоновых кислот, кетонов, спиртов и т.д.

Для определения принадлежности органического соединения к ряду и классу выделяют карбоновый скелет или карбоновую цепь (ациклические соединения), цикл (карбоциклических соединения) или ядро В дальнейшем определяют наличие в молекуле органического вещества других атомных (функциональных) групп, например, гидроксила - ОН, карбоксила - СООН, аминогруппы, иминогруппы, сульфгидридной группы - SH и т.д. Функциональная группа или группы определяют принадлежность биосоединения к определенному классу, его главные физические и химические свойства. Следует сказать, что каждая функциональная группа не только определяет эти свойства, но и влияет на другие атомы и атомные группы, одновременно испытывая и их влияние.

При замещении в молекулах ациклических и циклических углеводородов или гетероциклических соединений атома Гидрогена на различные функциональные группы получают органические соединения, которые относятся к определенным классам. Приводим отдельные функциональные группы, определяющие принадлежность органического соединения к определенному классу: углеводороды R-H, галогенопроизводные углеводородов - R-Hal, альдегиды - R-COH, кетоны - R1-CO-R2, спирты и фенолы R-OH, карбоновые кислоты - R-COOH, - R1-O-R2, галогеноангидриды карбоновых кислот R-COHal, R-COOR, нитросоединения - R-NO2, сульфокислоты -R-SO3H, металлоорганические соединения - R-Me, меркаптаны R-SH.

Органические соединения, имеющие в структуре своих молекул одну функциональную группу, называют органическими соединениями с простыми функциями, две и более - соединениями со смешанными функциями. Примерами органических соединений с простыми функциями могут быть углеводороды, спирты, кетоны, альдегиды, амины, карбоновые кислоты, нитросоединения и т.д. Примерами соединений со смешанными функциями могут быть гидроксикислоты, кетокислоты и т.п.

Особое место занимают сложные биоорганические соединения: протеины, протеиды, липиды, нуклеиновые кислоты, углеводы, в молекулах которых большое количество различных функциональных групп.

В настоящее время известно более 10 млн органических соединений. Такое громадное количество соединений требует строгой классификации и единых международных номенклатурных правил. Этому вопросу уделяется особое внимание в связи с использованием компьютерных технологий для создания разнообразных баз данных.

1.1. Классификация

Строение органических соединений описывается с помощью структурных формул.

Структурной формулой называют изображение последовательности связывания атомов в молекуле при помощи химических символов.

С понятием последовательности соединения атомов в молекуле непосредственно связано явление изомерии, т. е. существования соединений одинакового состава, но различного химического стро- ения, называемых структурными изомерами (изомеры строения). Важнейшей характеристикой большинства неорганических соединений служит состав, выражаемый молекулярной формулой, например хлороводородная кислота HC1, серная кислота H 2 SO 4. Для органи- ческих соединений состав и соответственно молекулярная формула не являются однозначными характеристиками, так как одному и тому же составу может соответствовать много реально существующих соединений. Например, структурные изомеры бутан и изобутан, имея одинаковую молекулярную формулу С 4 Н 10, различаются последовательностью связывания атомов и имеют разные физико-химические характеристики.

Первым классификационным критерием служит деление органических соединений на группы с учетом строения углеродного скелета (схема 1.1).

Схема 1.1. Классификация органических соединений по строению углеродного скелета

Ациклические соединения - это соединения с незамкнутой цепью атомов углерода.

Алифатические (от греч. a leiphar - жир) углеводороды - простейшие представители ациклических соединений - содержат только атомы углерода и водорода и могут быть насыщенными (алканы) и ненасыщенными (алкены, алкадиены, алкины). Их структурные формулы часто записывают в сокращенном (сжатом) виде, как показано на примере н -пентана и 2,3-диметилбутана. При этом обозначение одинарных связей опускают, а одинаковые группы заключают в скобки и указывают число этих групп.

Углеродная цепь может быть неразветвленной (например, в н-пентане) и разветвленной (например, в 2,3-диметилбутане и изопрене).

Циклические соединения - это соединения с замкнутой цепью атомов.

В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

Карбоциклические соединения содержат в цикле только атомы углерода и делятся на ароматические и алициклические (циклические неароматические). Число атомов углерода в циклах может быть различным. Известны большие циклы (макроциклы), состоящие из 30 атомов углерода и более.

Для изображения циклических структур удобны скелетные формулы, в которых опускают символы атомов углерода и водорода, но символы остальных элементов (N, O, S и др.) указывают. В таких

формулах каждый угол многоугольника означает атом углерода с необходимым числом атомов водорода (с учетом четырехвалентности атома углерода).

Родоначальником ароматических углеводородов (аренов) является бензол. Нафталин, антрацен и фенантрен относятся к полициклическим аренам. Они содержат конденсированные бензольные кольца.

Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (от греч. heteros - другой, иной): азот, кислород, серу и др.

Большое многообразие органических соединений можно рассматривать в целом как углеводороды или их производные, полученные путем введения в структуру углеводородов функциональных групп.

Функциональная группа - это гетероатом или группа атомов неуглеводородного характера, определяющие принадлежность соеди- нения к определенному классу и ответственных за его химические свойства.

Вторым, более существенным классификационным критерием, служит деление органических соединений на классы в зависимости от природы функциональных групп. Общие формулы и названия важнейших классов приведены в табл. 1.1.

Соединения с одной функциональной группой называют монофункциональными (например, этанол), с несколькими одинаковыми функциональными группами - полифункциональными (например,

Таблица 1.1. Важнейшие классы органических соединений

* К функциональным группам иногда причисляют двойную и тройную связи.

** Применяемое иногда название тиоэфиры использовать не следует, так как оно

относится к серосодержащим сложным эфирам (см. 6.4.2).

глицерин), с несколькими разными функциональными группами - гетерофункциональными (например, коламин).

Соединения каждого класса составляют гомологический ряд, т. е. группу родственных соединений с однотипной структурой, каждый последующий член которого отличается от предыдущего на гомологическую разность СН 2 в составе углеводородного радикала. Например, ближайшими гомологами являются этан С 2 Н 6 и пропан С з Н 8 , метанол

СН 3 ОН и этанол СН 3 СН 2 ОН, пропановая СН 3 СН 2 СООН и бутановая СН 3 СН 2 СН 2 СООН кислоты. Гомологи обладают близкими химическими свойствами и закономерно изменяющимися физическими свойствами.

1.2. Номенклатура

Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств.

В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum - молоко), пальмитиновая кислота - из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys - сладкий).

Тривиальные названия особенно часто имеют природные соединения - аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

* Номенклатурные правила ИЮПАК по химии. Т. 2. - Органическая химия/пер. с англ. - М.: ВИНИТИ, 1979. - 896 с.; Хлебников А.Ф., Новиков М.С. Современная номенклатура органических соединений, или Как правильно называть органические вещества. - СПб.: НПО «Профессионал», 2004. - 431 с.

В тривиальных названиях дизамещенных производных бензола взаимное расположение заместителей в кольце обозначается префиксами орто- (о-) - для групп, находящихся рядом, мета- (м-) - через один атом углерода и пара- (п-) - напротив. Например:

Для использования систематической номенклатуры ИЮПАК необходимо знать содержание следующих номенклатурных терминов:

Органический радикал;

Родоначальная структура;

Характеристическая группа;

Заместитель;

Локант.

Органический радикал* - остаток молекулы, из которой удаляются один или несколько атомов водорода и при этом остаются свободными одна или несколько валентностей.

Углеводородные радикалы алифатического ряда имеют общее название - алкилы (в общих формулах обозначаются R), радикалы ароматического ряда - арилы (Ar). Два первых представителя алканов - метан и этан - образуют одновалентные радикалы метил СН 3 - и этил СН 3 СН 2 -. Названия одновалентных радикалов обычно образуются при замене суффикса -ан суффиксом -ил.

Атом углерода, связанный только с одним атомом углерода (т. е. концевой), называют первичным, с двумя - вторичным, с тремя - третичным, с четырьмя - четвертичным.

* Этот термин не следует путать с термином «свободный радикал», который характеризует атом или группу атомов с неспаренным электроном.

Каждый последующий гомолог из-за неравноценности атомов углерода образует несколько радикалов. При удалении атома водорода от концевого атома углерода пропана получают радикал н -пропил (нормальный пропил), а от вторичного атома углерода - радикал изопропил. Бутан и изобутан каждый образуют по два радикала. Буква н- (которую разрешается опускать) перед названием радикала указывает, что свободная валентность находится на конце неразветвленной цепи. Префикс втор- (вторичный) означает, что свободная валентность находится у вторичного атома углерода, а префикс трет- (третичный) - у третичного.

Родоначальная структура - химическая структура, составляющая основу называемого соединения. В ациклических соединениях в качестве родоначальной структуры рассматривается главная цепь атомов углерода, в карбоциклических и гетероциклических соединениях - цикл.

Характеристическая группа - функциональная группа, связанная с родоначальной структурой или частично входящая в ее состав.

Заместитель - любой атом или группа атомов, замещающие в ор- ганическом соединении атом водорода.

Локант (от лат. locus - место) цифра или буква, указывающая положение заместителя или кратной связи.

Наиболее широко применяются два вида номенклатуры: заместительная и радикально-функциональная.

1.2.1. Заместительная номенклатура

Общая конструкция названия по заместительной номенклатуре представлена на схеме 1.2.

Схема 1.2. Общая конструкция названия соединения по заместительной номенклатуре

Название органического соединения представляет собой сложное слово, включающее название родоначальной структуры (корень) и названия разного типа заместителей (в виде префиксов и суффиксов), отражающих их природу, местонахождение и число. Отсюда и название этой номенклатуры - заместительная.

Заместители подразделяются на два типа:

Углеводородные радикалы и характеристические группы, обозначаемые только префиксами (табл. 1.2);

Характеристические группы, обозначаемые как префиксами, так и суффиксами в зависимости от старшинства (табл. 1.3).

Для составления названия органического соединения по заместительной номенклатуре используют приводимую ниже последовательность правил.

Таблица 1.2. Некоторые характеристические группы, обозначаемые только префиксами

Таблица 1.3. Префиксы и суффиксы, применяемые для обозначения важнейших характеристических групп

* Атом углерода, отмеченный цветом, включается в состав родоначальной структуры.

** Большинство фенолов имеет тривиальные названия.

Правило 1. Выбор старшей характеристической группы. Выявляют все имеющиеся заместители. Среди характеристических групп определяют старшую группу (если она присутствует), используя шкалу старшинства (см. табл. 1.3).

Правило 2. Определение родоначальной структуры. В качестве родо- начальной структуры в ациклических соединениях используют главную цепь атомов углерода, а в карбоциклических и гетероциклических соединениях - основную циклическую структуру.

Главную цепь атомов углерода в ациклических соединениях выбирают по приведенным ниже критериям, причем каждый последую- щий критерий используют, если предыдущий не приводит к однозначному результату:

Максимальное число характеристических групп, обозначаемых как префиксами, так и суффиксами;

Максимальное число кратных связей;

Максимальная длина цепи атомов углерода;

Максимальное число характеристических групп, обозначаемых только префиксами.

Правило 3. Нумерация родоначальной структуры. Родоначальную структуру нумеруют так, чтобы старшая характеристическая группа получила наименьший локант. Если выбор нумерации неоднозначен, то применяют правило наименьших локантов, т. е. нумеруют так, чтобы заместители получили наименьшие номера.

Правило 4. Название блока родоначальной структуры со старшей характеристической группой. В названии родоначальной структуры степень насыщенности отражают суффиксами: -ан в случае насыщенного углеродного скелета, -ен - при наличии двойной и -ин - тройной связи. К названию родоначальной структуры присоединяют суффикс, обозначающий старшую характеристическую группу.

Правило 5. Названия заместителей (кроме старшей характеристической группы). Дают название заместителям, обозначаемым префиксами в алфавитном порядке. Положение каждого заместителя и каждой кратной связи указывают цифрами, соответствующими номеру атома углерода, с которым связан заместитель (для кратной связи указывают только наименьший номер).

В русской терминологии цифры ставят перед префиксами и после суффиксов, например, 2-аминоэтанол H 2 NCH 2 CH 2 OH, бутадиен-1,3

СН 2 =СН-СН=СН 2 , пропанол-1 СН 3 СН 2 СН 2 ОН.

Для иллюстрации этих правил ниже приведены примеры построения названий ряда соединений в соответствии с общей схемой 1.2. В каждом случае отмечены особенности строения и способ их отражения в названии.

Схема 1.3. Построение систематического названия фторотана

2- бромо-1,1,1-трифторо-2-хлороэтан (средство для ингаляционного наркоза)

При наличии в соединении нескольких одинаковых заместителей при одном и том же атоме углерода локант повторяют столько раз, сколько имеется заместителей, с добавлением соответствующего умножающего префикса (схема 1.3). Заместители перечисляют по алфавиту, причем умножающий префикс (в данном примере - три-) в алфавитном порядке не учитывают. Схема 1.4. Построение систематического названия цитраля

После суффикса -аль, как и для сочетания -овая кислота, можно не указывать положение характеристических групп, так как они всегда находятся в начале цепи (схема 1.4). Двойные связи отражают суффиксом -диен с соответствующими локантами в названии родоначальной структуры.

Суффиксом обозначают старшую из трех характеристических групп (схема 1.5); остальные заместители, включая нестаршие характеристические группы, перечисляют по алфавиту как префиксы.

Схема 1.5. Построение систематического названия пеницилламина

Схема 1.6. Построение систематического названия щавелевоуксусной кислоты

оксобутандиовая кислота (продукт углеводного обмена)

Умножающий префикс ди- перед сочетанием -овая кислота указывает на наличие двух старших характеристических групп (схема 1.6). Локант перед оксо- опущен, так как иное положение оксогруппы соответствует той же структуре.

Схема 1.7. Построение систематического названия ментола

Нумерацию в цикле ведут от атома углерода, с которым связана старшая характеристическая группа (ОН) (схема 1.7), несмотря на то, что наименьший набор локантов всех заместителей в кольце может быть 1,2,4-, а не 1,2,5- (как в рассматриваемом примере).

Схема 1.8. Построение систематического названия пиридоксаля

I Заместители: ГВДРОКСИМЕТИЛ,ГИДРОКСИ, МЕТИЛ I

Альдегидную группу, атом углерода которой не включен в родоначальную структуру (схема 1.8), обозначают суффиксом -карбаль- дегид (см. табл. 1.3). Группу -СН 2 ОН рассматривают как составной заместитель и называют «гидроксиметил», т. е. метил, в котором в свою очередь произведено замещение атома водорода гидроксильной группой. Другие примеры составных заместителей: диметиламино- (CH 3) 2 N-, этокси- (сокращение от этилокси) С 2 Н 5 О-.

1.2.2. Радикально-функциональная номенклатура

Радикально-функциональная номенклатура используется реже, чем заместительная. В основном она применяется для таких классов органических соединений, как спирты, амины, простые эфиры, сульфиды и некоторых других.

Для соединений с одной функциональной группой общее название включает название углеводородного радикала, а наличие функцио- нальной группы отражают опосредованно через название соответствующего класса соединений, принятого в этом виде номенклатуры (табл. 1.4).

Таблица 1.4. Названия классов соединений, используемые в радикальнофункциональной номенклатуре*

1.2.3. Построение структуры по систематическому названию

Изображение структуры по систематическому названию представляется обычно более легкой задачей. Сначала записывают родо- начальную структуру - открытую цепь или цикл, затем нумеруют атомы углерода и расставляют заместители. В заключение дописывают атомы водорода с условием, чтобы каждый атом углерода оказался четырехвалентным.

В качестве примера приводится построение структур лекарственного средства ПАСК (сокращение от пара-аминосалициловой кислоты, систематическое название - 4-амино-2-гидроксибензойная кислота) и лимонной (2-гидроксипропан-1,2,3-трикарбоновой) кислоты.

4-Амино-2-гидроксибензойная кислота

Родоначальная структура - тривиальное название цикла со старшей характеристической

группой (СООН):

Расстановка заместителей - группа у атома С-4 и группа ОН у атома С-2:

2-Гидроксипропан-1,2,3-трикарбоновая кислота

Главная углеродная цепь и нумерация:

Расстановка заместителей - три группы СООН (-трикарбоновая кислота) и группа ОН у атома С-2:

Дополнение атомами водорода:


Следует заметить, что в систематическом названии лимонной кислоты в качестве родоначальной структуры выбран пропан, а не более длинная цепь - пентан, так как в пятиуглеродную цепь невозможно включить атомы углерода всех карбоксильных групп.

В истории развития органической химии выделяют два периода: эмпирический (с середины XVII до конца XVIII века), в который познание органических веществ, способов их выделения и переработки происходило опытным путем и аналитический (конец XVIII – середина XIX века), связанный с появлением методов установления состава органических веществ. В аналитический период было установлено, что все органические вещества содержат углерод. Среди, других элементов, входящих в состав органических соединений были обнаружены водород, азот, сера, кислород и фосфор.

Важное значение в истории органической химии имеет структурный период (вторая половина XIX – начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был А.М. Бутлеров.

Основные положения теории строения органических соединений:

  • атомы в молекулах соединены между собой в определенном порядке химическими связями в соответствии с их валентностью. Углерод во всех органических соединениях четырехваленнтен;
  • свойства веществ зависят не только от их качественного и количественного состава, но и от порядка соединения атомов;
  • атомы в молекуле взаимно влияют друг на друга.

Порядок соединения атомов в молекуле описывается структурной формулой, в которой химические связи изображаются черточками.

Характерные свойства органических веществ

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений:

  1. Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твердые вещества, в отличие неорганических соединений, которые в большинстве своём представляют собой твердые вещества с высокой температурой плавления.
  2. Органические соединения большей частью построены ковалентно, а неорганические соединения - ионно.
  3. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров - соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  4. Явление гомологии - существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу - гомологическую разницу CH 2 . Органические вещества горят.

Классификация органических веществ

В классификации принимают за основу два важных признака – строение углеродного скелета и наличие в молекуле функциональных групп.

В молекулах органических веществ атомы углерода соединяются друг с другом, образуя т.н. углеродный скелет или цепь. Цепи бывают открытыми и замкнутыми (циклическими), открытые цепи могут быть неразветвленными (нормальными) и разветвленными:

По строению углеродного скелета различают:

— алициклические органические вещества, имеющие открытую углеродную цепь как разветвленную, так и неразветвленную. Например,

СН 3 -СН 2 -СН 2 -СН 3 (бутан)

СН 3 -СН(СН 3)-СН 3 (изобутан)

— карбоциклические органические вещества, в которых углеродная цепь замкнута в цикл (кольцо). Например,

— гетероциклические органические соединения, содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода или серы:

Функциональная группа – атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу. Признаком, по которому органическое вещество относят к тому или иному классу, является природа функциональной группы (табл. 1).

Таблица 1. Функциональные группы и классы.


Соединения могут содержать не одну, а несколько функциональных групп. Если эти группы одинаковые, то соединения называют полифункциональными, например хлороформ, глицерин. Соединения, содержащие различные функциональные группы, называют гетерофункциональными, их можно одновременно отнести к нескольким классам соединений, например молочную кислоту можно рассматривать, как карбоновую кислоту и как спирт, а коламин – как амин и спирт.