Назначение детали ось в машиностроении. Валы и оси общие сведения

Валы и оси. Общие сведения

Вал — деталь машин, предназначенная для передачи крутящего момента вдоль своей осевой линии. В большинстве случаев валы поддерживают вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др.). Некоторые валы (например, гибкие, карданные, торсионные) не поддерживают вращающиеся детали. Валы машин, которые кроме деталей передач несут рабочие органы машины, называются коренными. Коренной вал станков с вращательным движением инструмента или изделия называется шпинделем. Вал, распределяющий механическую энергию по отдельным рабочим машинам, называется трансмиссионным. В отдельных случаях валы изготовляют как одно целое с цилиндрической или конической шестерней (вал—шестерня) или с червяком (вал — червяк).

По форме геометрической оси валы бывают прямые, коленчатые и гибкие (с изменяемой формой оси). Простейшие прямые валы имеют форму тел вращения. На рисунке показаны гладкий (а) и ступенчатый (б) прямые валы. Ступенчатые валы, являются наиболее распространенными. Для уменьшения массы или для размещения внутри других деталей валы иногда делают с каналом по оси; в отличие от сплошных такие валы называют полыми.

Ось — деталь машин и механизмов, служащая для поддержания вращающихся частей, но не передающая полезный крутящий момент. Оси бывают вращающиеся (а ) и неподвижные (б ) . Вращающаяся ось устанавливается в подшипниках. Примером вращающихся осей могут служить оси железнодорожного подвижного состава, примером невращающихся – оси передних колес автомобиля.

Из определений видно, что при работе валы всегда вращаются и испытывают деформации кручения или изгиба и кручения, а оси — только деформацию изгиба (возникающими в отдельных случаях деформациями растяжения и сжатия чаще всего пренебрегают).

Конструктивные элементы валов и осей

Опорная часть вала или оси называется цапфой. Концевая цапфа называется шипом, а промежуточная — шейкой. Концевая цапфа, предназначенная нести преимущественную осевую нагрузку, называется пятой. Шипы и шейки вала опираются на подшипники, опорной частью для пяты является подпятник. По форме цапфы могут быть цилиндрическими, коническими, шаровыми и плоскими (пяты).

Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком. Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечиком.

Для уменьшения концентрации напряжений и повышения прочности переходы в местах изменения диаметра вала или оси делают плавными. Криволинейную поверхность плавного перехода от меньшего сечения к большему называют галтелью. Галтели бывают постоянной и переменной кривизны. Галтель вала, углубленную за плоскую часть заплечика, называют поднутрением.

Форма вала по длине определяется распределением нагрузок, т. е. эпюрами изгибающих и крутящих моментов, условиями сборки, и технологией изготовления. Переходные участки валов между соседними ступенями разных диаметров нередко выполняют с полукруглой канавкой для выхода шлифовального круга.

Посадочные концы валов, предназначенные для установки деталей, передающих вращающий момент в машинах, механизмах и приборах, стандартизованы. ГОСТ 12080—66* устанавливает номинальные размеры цилиндрических концов валов двух исполнений (длинные и короткие) диаметров от 0,8 до 630 мм, а также рекомендуемые размеры концов валов с резьбой. ГОСТ 12081—72* устанавливает основные размеры конических концов валов с конусностью 1:10 также двух исполнений (длинные и короткие) и двух типов (с наружной и внутренней резьбой) диаметров от 3 до 630 мм.

Материалы валов и осей. Требованиям работоспособности валов и осей наиболее полно удовлетворяют углеродистые и легированные стали, а в ряде случаев — высокопрочные чугуны. Выбор материала, термической и химико-термической обработки определяется конструкцией вала и опор, техническими условиями на изделие и условиями его эксплуатации.

Для большинства валов применяют термически обработанные стали 45 и 40Х, а для ответственных конструкций — сталь 40ХН, ЗОХГТ и др. Валы из этих сталей подвергают улучшению или поверхностной закалке ТВЧ.

Быстроходные валы, вращающиеся в подшипниках скольжения, требуют высокой твердости цапф, поэтому их изготовляют из цементируемых сталей 20Х, 12Х2Н4А, 18ХГТ или азотируемых сталей типа 38Х2МЮА и др. Наибольшую износостойкость имеют хромированные валы.

Обычно валы подвергают токарной обработке с последующим шлифованием посадочных поверхностей и цапф. Иногда посадочные поверхности и галтели полируют или упрочняют поверхностным наклепом (обработка шариками или роликами).

Расчет валов и осей

При работе валы и вращающиеся оси даже при постоянной внешней нагрузке испытывают знакопеременные напряжения изгиба симметричного цикла, следовательно, возможно усталостное разрушение валов и вращающихся осей. Чрезмерная деформация валов может нарушить нормальную работу зубчатых колес и подшипников, следовательно, основными критериями работоспособности валов и осей являются сопротивление усталости материала и жесткость. Практика показывает, что разрушение валов быстроходных машин обычно происходит в результате усталости материала.

Для окончательного расчета вала необходимо знать его конструкцию, тип и расположение опор, места приложения внешних нагрузок. Вместе с тем подбор подшипников можно осуществить только когда известен диаметр вала. Поэтому расчет валов выполняется в два этапа: предварительный (проектный) и окончательный (проверочный) (второй этап рассматривать не будем).

Предварительный расчет валов. Проектный расчет производится только на кручение, причем для компенсации напряжений изгиба и других неучтенных факторов принимают значительно пониженные значения допускаемых напряжений кручения, например для выходных участков валов редукторов =(0,025...0,03), где — временное сопротивление материала вала. Тогда диаметр вала определится из условия прочности

откуда

Полученное значение диаметра округляется до ближайшего стандартного размера согласно ГОСТ 6636—69* «Нормальные линейные размеры», устанавливающего четыре ряда основных и ряд дополнительных размеров; последние допускается применять лишь в обоснованных случаях.

При проектировании редукторов диаметр выходного конца ведущего вала можно принять равным диаметру вала электродвигателя, с которым вал редуктора будет соединен муфтой.

После установления диаметра выходного конца вала назначается диаметр цапф вала (несколько больше диаметра выходного конца) и производится подбор подшипников. Диаметр посадочных поверхностей валов под ступицы насаживаемых деталей для удобства сборки принимают больше диаметров соседних участков. В результате этого ступенчатый вал по форме оказывается близок к брусу равного сопротивления.

Часто используют валы. Давайте разберемся, что называется валом, в чем его отличие от оси, из чего состоит деталь вал, его классификация и материалы, используемые при производстве валов.

Определение, конструктивные особенности

Вал — деталь механизма, выполненная из , имеющая сечение определенной формы и передающая крутящий момент на другие элементы, вызывая их вращение.

Ось, отличается от вала тем, что служит только для их опоры. Если оси подразделяются на подвижные и статические, то валы всегда вращающиеся. Геометрическая форма оси, может быть только прямой.

Вал составляют следующие участки:

  1. Опорный.
  2. Промежуточный.
  3. Концевой.

Кольцевое утолщение называется буртиком. Промежуточная часть между разными диаметрами для фиксации одеваемых деталей носит название – заплечик.

Участок где происходит изменение диаметра вала называется галтелью. С Целью увеличения прочности кривизна галтели меняется плавно. Различают 2 вида кривизны: постоянная и переменная. Увеличение значения кривизны галтели и изготовление специальных отверстий повышает надежность вала на одну десятую часть.

В зависимости от распределения величины нагрузок, отражённого в специальных графиках (эпюрах) определяют длину и форму вала. Также этот параметр зависит от условий сборки и метода изготовления.

Размеры посадочных мест для крутящихся элементов расположенных на концах валов жестко стандартизированы по ГОСТам.

Материалы

В зависимости от внешних сил, которым подвергается деталь вал в процессе эксплуатации, осуществляется для его изготовления.

Для этой цели используют с высоким содержанием углерода, так как обладают улучшенными механическими характеристиками и износостойкостью. Получают данные детали методом прокатки.

Основную массу валов производят из легированной стали марки 45Х, со средним содержанием углерода. Для валов, подвергающихся высоким напряжениям используют стали 40ХН, 40ХНГМА, 30ХГТ и другие, которые подвергаются процессу закалки с высоким отпуском.

Кроме того, для коленчатых тяжелых валов в качестве материала используют высокопрочные чугуны, образованные путем вкрапления в металлическую решетку шарообразных включений углерода и содержащие в составе Mg, Ca, Se, Y.

Классификация валов

По назначению:

  1. Валы передач, на которых расположены детали механизма передач (шестеренки, муфты, шкифы).
  2. Коренные, которые несут другие части.

По форме оси:

  1. Прямые.
  2. Кривошипные.
  3. Гибкие.

Прямые делятся на:

  1. Гладкие.
  2. Ступенчатые.
  3. Червячного типа.
  4. Фланцевые.
  5. Карданные.

По форме сечения:

  1. Гладкие.
  2. Пустотелые.
  3. Шлицевые.

Производство

Существуют несколько этапов изготовления:

  1. Проведение проектных и конструкторских работ и расчетов с привлечением специального программного обеспечения.
  2. Выбор и закупка необходимого материала, отвечающего требуемым характеристикам. Оснащение дополнительным производственным оборудованием, при необходимости.
  3. Формовка.
  4. Сварка и шлифовка.
  5. Динамическая балансировка.
  6. Нанесение защитного покрытия.

Первый этап обычно выполняются в конструкторском бюро. По окончанию работы оформляется проектная документация, содержащая расчеты и обработанные данные, в строгом соответствии с которыми будет осуществляться производство данного типа детали.

На втором этапе, производится выбор материала заготовки, отвечающего требуемым эксплуатационным характеристикам и перевооружение производства технологическим оборудованием.

Третий этап выполняется с использованием токарного оборудования, где заготовка подвергается механической обработке и обретает свою геометрию и размер. При этом, изменению подвергаются все поверхности заготовки.

На четвертом этапе производится скрепление отдельных элементов заготовки путем их сварки и изготовления необходимых отверстий и канавок. Затем, с помощью современных методов измерения, происходит шлифовка и доведения до их конечных размеров.

На следующем этапе, проверяют балансировку деталей, подвергая их динамическим испытаниям, так как от этого зависит полнота передачи энергии вращения другим элементам механизма. Нарушения балансировки может привести к нарушению эксплуатации оборудования на котором будет установлен вал.

Последний — шестой этап характеризуется нанесением специального слоя на его поверхность. Выбор способы и вида покрытий зависит от условий эксплуатации.

Тонкий слой резины на поверхности валов предохраняет от действия реакционных сред. Стойкость к коррозии обеспечивается электродуговым металлическим напылением этих деталей.

Методом хромирования добиваются увеличения износостойкости и уменьшения трения данного типа деталей.

Деталь — вал получило широкое использование во многих направлениях промышленности: автомобилестроении, станкостроении, железнодорожной, текстильной, деревообрабатывающей промышленности.

Подробно рассмотрев те вопросы, которые были поставлены выше, можно заключить:

  1. Вал отличается от оси своей функциональностью и геометрией.
  2. Вал состоит из 3-х участков (цапфы, шейки, шипа).
  3. Существуют различные типы классификации валов по назначению и формам.
  4. Материалом для детали выступают легированные стали различных марок, реже с шарообразными вкраплениями углерода.
  5. Изготовление вала включает в себя несколько этапов и требует специальных знаний и значительных затрат энергоресурсов.
  6. Для увеличения времени эксплуатации валов на этапе производства их поверхность покрывают специальными материалами.
  7. Вал широко применяется во многих механизмах в различных областях деятельности человека.

НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ ВАЛОВ. ВАЛЫ И ОСИ

Вращающиеся детали машин (зубча-тые колеса, шкивы, звездочки и др.) размещают на валах и осях. Валы пред-назначены для передачи вращающего момента вдоль своей оси. Силы, возни-кающие при передаче вращающего мо-мента, вызывают напряжения кручения и изгиба, а иногда напряжения растя-жения или сжатия.

Оси не передают вращающий момент; действующие в них силы вызывают лишь напряжения изгиба (незначительные вращающие моменты от сил трения не учитывают-ся). Валы вращаются в подшипниках . Ocи могут быть вращающиеся или не-подвижные.

По назначению различают валы пе-редач и коренные валы, несущие нагруз-ку не только от деталей передач, но и от рабочих органов машин (дисков, фрез, барабанов и т. д.).

По конструкции валы можно разде-лить на прямолинейные, коленчатые и гибкие (рис. 4.1). Широко применяют прямолинейные валы ступенчатой кон-струкции. Такая форма вала удобна при монтаже, так как позволяет установить деталь с натягом без повреждения со-седних участков и обеспечить ее осевую фиксацию. Уступы валов могут воспри-нимать значительные осевые нагрузки. Однако в местах сопряжения участков разного диаметра возникает концент-рация напряжений, что снижает проч-ность вала.

Чтобы уменьшить массу вала, и обеспечить подачу масла, охлаждающей жидкости или воздуха, применяют полые валы.

К особой группе относятся гибкие валы, используемые для передачи вра-щающего момента между валами, оси вращения которых смещены в пространстве.

В сельскохозяйственных, подъемно-транспортирующих и других машинах часто используют трансмисси-онные валы, длина которых достигает нескольких метров. Их выполняют со-ставными, соединяя с помощью флан-цев или муфт.

Критерии работоспособности вала.

Конструкция, размеры и материал вала существенно зависят от критериев, оп-ределяющих его работоспособность. Работоспособность валов характеризу-ется в основном их прочностью и жест-костью, а в некоторых случаях виброус-тойчивостью и износостойкостью.

Большинство валов передач разру-шаются вследствие низкой усталостной прочности. Поломки валов в зоне кон-центрации напряжений происходят из-за действий переменных напряжений. Для тихоходных валов, работающих с перегрузками, основным критерием ра-ботоспособности служит статическая прочность. Жесткость валов при изгибе и кручении определяется значениями прогибов, углов поворота упругой ли-нии и углов закрутки. Упругие переме-щения валов отрицательно влияют на работу зубчатых и червячных передач, подшипников, муфт и других элемен-тов привода, понижая точность меха-низмов, увеличивая концентрацию на-грузок и износ деталей.


Для быстроходных валов опасно возникновение резонанса — явления, когда частота собственных колебаний совпадает или кратна частоте возмуща-ющих сил. Для предотвращения резо-нанса выполняют расчет на виброустойчивость. При установке валов на подшипниках скольжения размеры цапф вала определяют из условия изно-состойкости опоры скольжения.

Рис. 4.1 Типы валов и осей:

а — прямая ось; б — ступенчатый сплошной вал; в — ступенчатый полый вал; г — коленчатый вал; д — гибкий вал

Конструирование вала выполняют поэтапно.

На первом этапе определяют расчет-ные нагрузки, разрабатывают расчет-ную схему вала, строят эпюры момен-тов. Этому этапу предшествует эскиз-ная компоновка механизма, в процессе которой предварительно определяют основные размеры вала и взаимное по-ложение деталей, участвующих в пере-даче нагрузок.

К действующим нагрузкам, которые передаются на вал со стороны детали (шкива, звездочки, зубчатого колеса и др.) или с вала на деталь, относятся:

Силы в зацеплении зубчатых и червячных передач;

Нагрузки на валы ременных и цепных передач;

Нагрузки, возникающие при установке муфт в результате неточности монтажа и других ошибок.

Определение сил в зацеплении и нагрузок на валы ременных и цепных передач рассмотрено выше.

При установке на концах входных; выходных валов соединительных муфт учитывают радиальную консольную грузку, вызывающую изгиб вала. Эту нагрузку рекомендуется определять по ГОСТ 16162-85.

Для входных и выходных валов одноступенчатых цилиндрических конических редукторов и для быстроходных валов редукторов любого типа консольную нагрузку можно приближенно рассчитать по формуле

; (4.1)

для тихоходных валов двух- и трех - ступенчатых редукторов, а также червячных передач

; (4.2.)

где Т — вращающий момент на валу, Н. м.

Силы и моменты, передаваемые ступицей на деталь, упрощенно принимают сосредоточенными и приложенны-ми в середине ее длины.

При выполнении расчетной схемы вал рассматривают как шарнирно-закрепленную балку. Положение точки опоры вала зависит от типа подшипника (рис. 4.2).

Рис. 4.2. Точки опоры вала:

а — на радиальном подшипнике; б — на радиально-упорном подшипнике;

в — на двух подшипниках в одной опоре; г — на подшипнике скольжения.

Действующие в двух взаимно перпендикулярных плоскостях (вертикальной и горизонтальной) силы переносят в точки на оси вала. Строят эпюры из-гибающих и вращающих моментов в двух плоскостях (рис. 4.3).

Момент от окружной силы изобра-жают на эпюре вращающих моментов, от осевой силы в вертикальной плоско-сти — в виде скачка М′ z на эпюре изги-бающих моментов. Эпюры строят по методике, изложенной в курсе сопротивления материалов.

По эпюрам определяют суммарные изгибающие моменты в любом сечении. Так в сечении 1-1 наибольший суммарный момент

где М z 1 изгибающий момент в опасном сече-нии в плоскости ZY; М х1 — изгибающий момент в опасном сечении в плоскости XY; М к1 — изги-бающий момент в плоскости действия консоль-ной нагрузки. Сравнивая полученные значения, выделяют наиболее опасные сечения вала.

На втором этапе разрабатывают кон-струкцию вала. Предварительно опре-деляют диаметр выходного участка по условному допустимому напряжению кручения [τ], принимая его равным 15-25 МПа.

Диаметр вала, мм,

Если выбрана ступенчатая конструк-ция вала, определяют диаметры и длины его участков, используя расчетную схе-му или эскизную компоновку (см. выше)

Рис. 4.3. Схемы нагружения вала. Эпюры изгиба-ющих и вращающего моментов Принятые размеры рекомендует-ся уточнять по ГОСТ 6636—69*.

Ступенчатая форма вала предпочти-тельна, так, как упрощается сборка со-единений с натягом, предотвращаются повреждения участков с поверхностями повышенной чистоты обработки, форма вала приближается к равнопрочному брусу. Однако в местах сопряжения участков разного диаметра возникает концентрация напряжений, что снижает прочность вала, а при использовании в качестве заготовки прутка или поковки усложняется технология изготовления, увеличивается расход металла. Чтобы снизить концентрацию на-пряжений, а следовательно, повысить усталостную прочность вала, переход-ные участки чаще всего выполняют с галтелями (рис. 4.4). Радиус галтели r и высоту заплечика (уступа) выбирают в зависимости от диаметра вала d, осе-вой силы, размеров R, с 1 и формы уста-навливаемой детали (табл. 4.1).

Рис. 4.4. Переходные участки вала в виде галтелей

Таблица 4.1 Размеры галтелей, мм. (см. рис.4.4.)

Если уступ служит для осевой фик-сации подшипника, то высота h . (табл.4.2) должна быть меньше толщины внутреннего кольца подшипни-ка на величину t, достаточную для раз-мещения лапок съемника при демон-таже.

Канавки для выхода шлифовального круга (рис. 4.5) вызывают более высо-кую концентрацию напряжений, чем галтели. Переходы такими канавками выполняют при значительном запасе прочности вала. Размеры канавок даны в таблице 4.3.

Чтобы исключить осевые зазоры, длину посадочного участка вала следует выполнять несколько меньше длины ступицы насаживаемой детали. Для удобства монтажа участок вала под по-садку с натягом должен иметь скосы и фаски (рис. 4.6, а, б, табл. 4.4).

Рис. 4.5. Канавки для выхода шлифовального круга:

а, б — для шлифования цилиндрической поверхности вала;

в — для шлифования цилиндрической поверхности и торца уступа

Если участок вала не имеет упорных буртиков, то его диаметр рекомендуют принимать на 5 % меньше посадочного диаметра (рис. 4.6, в).

Форма выходного участка вала (рис. 4.7) может быть цилиндрическая (ГОСТ 12080—66*) или коническая (ГОСТ 12081—72*). Конический конец вала выполнить сложнее. Однако кони-ческие соединения обладают большой нагрузочной способностью, их легче собирать и разбирать. Осевое усилие создают, затягивая гайку. Для этого на конце хвостовика предусматривают крепежную резьбу.

Рис. 4.6. Фаски (а), скосы (б) и переходные участки (в)

Рис. 4.7. Выходные участки валов: а - цилиндрический, б - конический

Форма и размеры шпоночных кана-вок на валу зависят от типа шпонки и режущего инструмента. Пазы для приз-матических шпонок, изготовленные дисковой фрезой, вызывают меньшую концентрацию напряжений. Однако фиксация шпонки здесь менее надеж-на, а паз длиннее за счет участков для выхода фрезы (рис. 4.8). При наличии пазов для призматических шпонок следует предусмотреть такие размеры участков ступенчатых валов, чтобы де-монтаж деталей происходил без удале-ния шпонок, так как шпонки устанав-ливают в пазах по прессовой посадке и выемка их нежелательна.

Поэтому ди-аметр d 2 соседнего посадочного участ-ка определяют с учетом высоты h шпонки:

где t 2 — глубина паза в ступице, мм

Рис. 4.8. Шпоночные пазы:

а — изготовленные пальцевой фрезой; б— дисковой фрезой.

Обозначения: l — рабочая длина шпонки; b— ширина шпонки;

lвых — длина участка для выхода фрезы; Dфр — диаметр дисковой фрезы

Если на выходных участках валов это условие невыполнимо, то шпоноч-ный паз фрезеруют «на проход». При установке на валу нескольких шпонок их следует располагать в одной плос-кости и предусматривать для них по возможности одинаковую ширину па-зов при соблюдении условий прочнос-ти шпоночных соединений. Это позво-ляет обрабатывать пазы без изменения положения вала и одним инструмен-том.

Размеры зубьев шлицевых участков выбирают, учитывая диаметры сосед-них посадочных участков вала. Для вы-хода режущего инструмента внутрен-ний диаметр d зубьев шлицевого участ-ка, расположенного между подшипни-ками, должен быть больше посадочного диаметра подшипника. В противном случае для выхода фрезы предусматри-вают участок длиной l вых (рис. 4.9, табл. 4.5).

По такому же принципу конструи-руют резьбовые участки валов под круг-лые шлицевые гайки. На участках пре-дусматривают канавки для выхода резь-бонарезного инструмента (рис.4.10, табл.4.6) и под язычок стопорной многолапчатой шайбы.

Рис. 4.9. Шлицевые участки валов

Таблица 4.5. Диаметр фрезы для прямобочных шлицев (см. рис.4.9)

Таблица 4.6. Размеры канавок разных типов, мм (см. рис. 4.11.)

Примечание. У канавок типа I радиус скоса r 1 = 0,5 мм.

При изготовлении вала за одно це-лое с шестерней (рис. 4.11) материал вала и способ термообработки выбира-ют по условиям прочности зубьев шес-терни.

Для изготовления валов применяют углеродистые конструкционные стали 40, 45, 50 и легированную сталь 40Х твердостью НВ≤ 300. Легированные стали 40ХН, 30ХГСА, 30ХГТ и других марок с последующей закалкой ТВЧ применяют для высоконагруженных валов. Быстроходные валы, вращающи-еся в подшипниках скольжения, для повышения износостойкости цапф из-готовляют из цементуемых сталей 20Х, 12ХНЗА, 18ХГТ или азотируемой стали 38Х2МЮА. Если размеры вала опреде-ляются условиями жесткости, то можно

использовать стали Ст. 5, Ст. 6. Это до-пускается при отсутствии на валу изна-шиваемых поверхностей (цапф, шли-цев и др.), требующих прочных, терми-чески обработанных сталей. Фасонные валы (например, коленчатые) изготов-ляют из высокопрочных и модифици-рованных чугунов.

Механические характеристики валов указаны в таблице 4.7.

На третьем этапе конструирования выполняют проверочный расчет вала, определяя эквивалентное напряжение или запас прочности в наиболее опас-ных сечениях.

Для валов, работающих в режиме кратковременных перегрузок, в целях предупреждения пластических дефор-маций выполняют проверочный рас-чет н а статическую проч-ность. Эквивалентное напряжение в опасном сечении, МПа,

; (4.6)

где d — диаметр вала, мм; М — наибольший из-гибающий момент, Н. м; Т — наибольший вра-щающий момент, Н. м.

Допустимое напряжение, МПа,

где σ т — предел текучести, МПа; S T — запас проч-ности по пределу текучести: S T = 1,2-1,8.

Проверочный расчет осей выполня-ют по формуле (4.6) при T = 0.

При длительно действующих на-грузках выполняют проверочный расчет н а сопротивление усталости. Коэффициент запаса усталостной прочности

; (4.8)

где S σ ; Sτ — коэффициенты запаса прочности со-ответственно по напряжениям изгиба и круче-ния; [S] — допустимый коэффициент запаса прочности: [S] = 2-2,5.

Коэффициент запаса прочности по напряжениям изгиба

; (4.9)

Рис. 4.11. Конструкция вала — шестерни.

Обозначения: da1 — диаметр шестерни; dB — диаметр вала;

dП — посадочный диаметр вала под подшипник по напряжениям кручения

; (4.10)

где σ -1,-1 — пределы выносливости материала вала соответственно при изгибе и кручении с симметричным знакопеременным циклом, МПа (см.табл. 4.7); К σ D , K D — коэффициенты кон-центрации напряжений, учитывающие влияние всех факторов на сопротивление усталости; σ а, D — переменные составляющие цикла измене-ния напряжений (амплитуды), МПа; ψ σ ψ — ко-эффициенты, характеризующие чувствитель-ность материала к асимметрии цикла напряже-ний (см. табл. 4.7); σ m ; m — постоянные состав-ляющие цикла изменения напряжений, МПа.

Составляющие цикла изменения на-пряжений изгиба:

; (4.11)

где M Σ — суммарный изгибающий момент, Н. м; W o — момент сопротивления сечения вала изги-бу) мм 3 ; F а — осевое усилие. Н; А — площадь се-чения вала, мм 2: А = nd 2 /4.

Вал - деталь машин, предназначенная для передачи вращающего момента вдоль своей осевой линии. В большинстве случаев валы поддерживают вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др.). Некоторые валы (например, гибкие, карданные, торсионные) не поддерживают вращающиеся детали. Валы машин, которые кроме деталей передач несут рабочие органы машины, называются коренными. Коренной вал станков с вращательным движением инструмента или изделия называется шпинделем. Вал, распределяющий механическую энергию по отдельным рабочим машинам, называется трансмиссионным. В отдельных случаях валы изготавливают как одно целое с цилиндрической или конической шестерней (вал- шестерня) или с червяком (вал-червяк).

По форме геометрической оси валы бывают прямые, коленчатые и гибкие (с изменяемой формой оси). Простейшие прямые валы имеют форму тел вращения. На рисунке 12.1 показаны гладкий (а) и ступенчатый (б) прямые валы. Ступенчатые валы являются наиболее распространенными. Для уменьшения массы или для размещения внутри других деталей валы иногда делают с каналом по оси; в отличие от сплошных такие валы называют полыми. Коленчатый вал изображен на рис. (12.1, в).

Рис. 12.1.

Ось - деталь машин и механизмов, служащая для поддержания вращающихся частей, но не передающая полезный вращающий момент. Оси бывают вращающиеся (рис. 12.2, а) и неподвижные (б). Вращающаяся ось устанавливается в подшипниках. Примером вращающихся осей могут служить оси железнодорожного подвижного состава.


Рис. 12.2.

Из определений видно, что валы при работе всегда вращаются и испытывают деформации кручения или изгиба и кручения, а оси - только деформацию изгиба.

Конструктивные элементы валов и осей (рис. 12.3). Опорная часть вала или оси называется цапфой. Концевая цапфа называется шипом, а промежуточная - шейкой. Концевая цапфа, предназначенная нести преимущественную осевую нагрузку, называется пятой. Шипы и шейки вала опираются на подшипники, опорной частью для пяты является подпятник. По форме цапфы могут быть цилиндрическими, коническими, шаровыми и плоскими. Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком.

Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечиком (см. рис. 12.1, б). Для уменьшения концентрации напряжений и повышения прочности переходы в местах изменения диаметра вала или оси делают плавными. Криволинейную поверхность плавного перехода от меньшего сечения к большему называют галтелью (см. рис. 12.1, б). Галтели бывают постоянной и переменной кривизны. Галтель вала, углубленную за плоскую часть заплечика, называют поднутрением.

Рис. 12.3.

Форма вала по длине определяется распределением нагрузок, т.е. эпюрами изгибающих и крутящих моментов, условиями сборки и технологией изготовления. Переходные участки валов между соседними ступенями разных диаметров нередко выполняют с полукруглой канавкой для выхода шлифовального круга.

Посадочные концы валов, предназначенные для установки деталей, передающих вращающий момент в машинах, механизмах и приборах, стандартизированы.

Материалы валов и осей. Требованиям работоспособности валов и осей наиболее полно удовлетворяют углеродистые и легированные стали, а в ряде случаев - высокопрочные чугуны. Выбор материала, термической и химико-термической обработки определяется конструкцией вала и опор, техническими условиями на изделие и условиями его эксплуатации.

Для большинства валов применяют термически обработанные стали 45 и 40Х, а для ответственных конструкций - стали 40ХН, ЗОХГТ и др. Валы из этих сталей подвергают улучшению или поверхностной закалке токами высокой частоты.

Быстроходные валы, вращающиеся в подшипниках скольжения, требуют высокой твердости цапф, поэтому их изготавливают из цементируемых сталей 20Х, 12Х2Н4А, 18ХГТ или азотируемых сталей типа 38Х2МЮА и др. Наибольшую износостойкость имеют хромированные валы.

Обычно валы подвергают токарной обработке с последующим шлифованием посадочных поверхностей и цапф. Иногда посадочные поверхности и галтели полируют или упрочняют поверхностным наклепом (обработка шариками или роликами).

Вращающиеся детали машин устанавливают на валах или осях, обеспечивающих постоянное положение оси вращения этих деталей.

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин.

Валы по назначению можно разделить на валы передач , несущие детали передач – зубчатые колеса, шкивы, звездочки, муфты (рис. ,а и б), и на коренные валы машин и другие специальные валы, несущие кроме деталей передач рабочие органы машин двигателей или орудий – колеса или диски турбин, кривошипы, зажимные патроны и т. д. (рис. ,в и д )

По форме геометрической оси валы разделяют на прямые и коленчатые.

Оси – детали, предназначенные для поддержания вращающихся деталей и не передающие полезного крутящего момента.

Рис. 12.1 Основные типы валов и осей:

а – гладкий трансмиссионный вал; б – ступенчатый вал;

в – шпиндель станка; г - вал паровой турбины; д – коленчатый вал;

е – ось вращающегося вагонная; ж – ось невращающаяся вагонетки.

Опорные части валов и осей называют цапфами . Промежуточные цапфы называют шейками , концевые – шипами .

Прямые валы по форме разделяют на валы постоянного диаметра (валы трансмиссионные и судовые многопролетные, рис. ,а, а также валы, передающие только крутящий момент); валы ступенчатые (большинство валов, рис. б-г ); валы с фланцами для соединения по длине, а также валы с нарезанными шестернями или червяками. По форме сечения валы разделяются на гладкие, шлицевые, имеющие на некоторой длине профиль зубчатого (шлицевого) соединения, и профильные.

Форма вала по длине определяется распределением нагрузок по длине.

Эпюры моментов по длине валов, как правило, существенно неравномерны. Крутящий момент обычно передается не на всей длине вала. Эпюры изгибающих моментов обычно сходят к нулю к концевым опорам или к концам валов. Поэтому по условию прочности допустимо и целесообразно конструировать валы переменного сечения приближающимися к телам равного сопротивления. Практически валы выполняю ступенчатыми. Эта форма удобна в изготовлении и сборке; уступы валов могут воспринимать большие осевые силы.

Перепад диаметров ступеней определяется: стандартными диаметрами посадочных поверхностей под ступицы и подшипники, достаточной опорной поверхностью для восприятия осевых сил при заданных радиусах закругления кромок и размерах фасок и, наконец, условиями сборок.

Цапфы (шейки) валов, работающие в подшипниках скольжения, выполняют: а) цилиндрическими; б) коническими; в) сферическими (рис.). Основное применение имеют цилиндрические цапфы. Концевые цапфы для облегчения сборки и фиксации вала в осевом направлении обычно делают несколько меньшего диаметра, чем соседний участок вала (рис.).

Цапфы валов для подшипников качения (рис.) характеризуются меньшей длиной, чем цапфы для подшипников скольжения.

Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец.

Посадочные поверхности под ступицы деталей, насаживаемых на вал, выполняют цилиндрическими или коническими. Основное применение имеют цилиндрические поверхности как более простые в изготовлении.

Рис. 12.4 Конструктивные средства повышения выносливости

валов в местах посадок: а – утолщение подступичной чвсти вала;

б – закругление кромок ступицы; в – утонение ступицы; г – разгрузочные

канавки; д – втулки или заливки в ступице из материала с низким модулем

упругости.

Выносливость валов определяется относительно малыми объемами металла в зонах значительной концентрации напряжений. Поэтому особо эффективны специальные конструкторские и технологические мероприятия по повышению выносливости валов.

Конструктивные средства повышения выносливости валов в местах посадок путем уменьшения кромочных давлений показаны на рис. .

Упрочнением подступичных частей поверхностным наклепом (обкаткой роликами или шариками) можно повысить предел выносливости валов на 80 – 100%, причем этот эффект распростра- няется на валы диаметром до 500 – 600 мм.

Прочность валов в местах шпоночных, зубчатых (шлицевых) и других разъемных соединений со ступицей может быть повышена: применением эвольвентных шлицевых соединений; шлицевых соединений с внутренним диаметром, равным диаметру вала на соседних участках, или с плавным выходом шлицев на поверхность, обеспечивающим минимум концентрации напряжений; шпоночных канавок, изготовляемых дисковой фрезой и имеющих плавный выход на поверхность; бесшпоночных соединений.

Осевые нагрузки и на валы от насаженных на них деталей передаются следующими способами. (рис.)

1) тяжелые нагрузки – упором деталей в уступы на валу, посадкой деталей или установочных колец с натягом (рис. ,а и б)

2) средние нагрузки – гайками, штифтами непосредственно или через установочные кольца, клеммовыми соединениями (рис. ,в – д);

3) легкие нагрузки и предохранение от перемещений случайными силами – стопорными винтами непосредственно или через установочные кольца, клеммовыми соединениями, пружинными кольцами (рис. ,д – ж).