Объем параллелепипеда построенных на трех векторах. Векторное произведение векторов

Для векторов , и , заданных своими координатами , , смешанное произведение вычисляется по формуле: .

Смешанное произведение применяют: 1) для вычисления объёмов тетраэдра и параллелепипеда, построенных на векторах , и , как на рёбрах, по формуле: ; 2) в качестве условия компланарности векторов , и : и - компланарны.

Тема 5. Прямые линии и плоскости.

Нормальным вектором прямой , называется всякий ненулевой вектор перпендикулярный данной прямой. Направляющим вектором прямой , называется всякий ненулевой вектор параллельный данной прямой.

Прямая на плоскости

1) - общее уравнение прямой, где - нормальный вектор прямой;

2) - уравнение прямой, проходящей через точку перпендикулярно данному вектору ;

3) каноническое уравнение );

4)

5) - уравнения прямой с угловым коэффициентом , где - точка через которую прямая проходит; () – угол, который прямая составляет с осью ; - длина отрезка (со знаком ), отсекаемого прямой на оси (знак « », если отрезок отсекается на положительной части оси и « », если на отрицательной).

6) - уравнение прямой в отрезках, где и - длины отрезков (со знаком ), отсекаемых прямой на координатных осях и (знак « », если отрезок отсекается на положительной части оси и « », если на отрицательной).

Расстояние от точки до прямой , заданной общим уравнением на плоскости, находится по формуле:

Угол , ( ) между прямыми и , заданными общими уравнениями или уравнениями с угловым коэффициентом, находится по одной из следующих формул:

Если или .

Если или

Координаты точки пересечения прямых и находятся как решение системы линейных уравнений: или .

Нормальным вектором плоскости , называется всякий ненулевой вектор перпендикулярный данной плоскости.

Плоскость в системе координат может быть задана уравнением одного из следующих видов:

1) - общее уравнение плоскости, где - нормальный вектор плоскости;

2) - уравнение плоскости, проходящей через точку перпендикулярно данному вектору ;

3) - уравнение плоскости, проходящей через три точки , и ;

4) - уравнение плоскости в отрезках, где , и - дины отрезков (со знаком ), отсекаемых плоскостью на координатных осях , и (знак « », если отрезок отсекается на положительной части оси и « », если на отрицательной).

Расстояние от точки до плоскости , заданной общим уравнением , находится по формуле:

Угол , ( ) между плоскостями и , заданными общими уравнениями, находится по формуле:

Прямая в пространстве в системе координат может быть задана уравнением одного из следующих видов:

1) - общее уравнение прямой, как линии пересечения двух плоскостей, где и - нормальные векторы плоскостей и ;

2) - уравнение прямой, проходящей через точку параллельно данному вектору (каноническое уравнение );

3) - уравнение прямой, проходящей через две данные точки , ;

4) - уравнение прямой, проходящей через точку параллельно данному вектору , (параметрическое уравнение );

Угол , ( ) между прямыми и в пространстве , заданными каноническими уравнениями находится по формуле:

Координаты точки пересечения прямой , заданной параметрическим уравнением и плоскости , заданной общим уравнением, находятся как решение системы линейных уравнений: .

Угол , ( ) между прямой , заданной каноническим уравнением и плоскостью , заданной общим уравнением находится по формуле: .

Тема 6. Кривые второго порядка.

Алгебраической кривой второго порядка в системе координат называется кривая , общее уравнение которой имеет вид:

где числа - не равны нулю одновременно. Существует следующая классификация кривых второго порядка: 1) если , то общее уравнение определяет кривую эллиптического типа (окружность (при ), эллипс (при ), пустое множество, точку); 2) если , то - кривую гиперболического типа (гиперболу, пару пересекающихся прямых); 3) если , то - кривую параболического типа (параболу, пустое множество, прямую, пару параллельных прямых) . Окружность, эллипс, гипербола и парабола называются невырожденными кривыми второго порядка.

Общее уравнение , где , определяющее невырожденную кривую (окружность, эллипс, гиперболу, параболу), всегда (методом выделения полных квадратов) можно привести к уравнению одного из следующих видов:

1а) - уравнение окружности с центром в точке и радиусом (рис. 5).

1б) - уравнение эллипса с центром в точке и осями симметрии, параллельными координатным осям. Числа и - называются полуосями эллипса основным прямоугольником эллипса; вершинами эллипса .

Для построения эллипса в системе координат :1) отмечаем центр эллипса; 2) проводим через центр пунктирной линией оси симметрии эллипса; 3) строим пунктиром основной прямоугольник эллипса с центром и сторонами , параллельными осям симметрии; 4) изображаем сплошной линией эллипс, вписывая его в основной прямоугольник так, чтобы эллипс касался его сторон только в вершинах эллипса (рис.6) .

Аналогично строится и окружность, основной прямоугольник которой имеет стороны (рис. 5).

Рис.5 Рис 6

2) - уравнения гипербол (называемых сопряжёнными ) с центром в точке и осями симметрии, параллельными координатным осям. Числа и - называются полуосями гипербол ; прямоугольник со сторонами , параллельными осям симметрии и центром в точке - основным прямоугольником гипербол; точки пересечения основного прямоугольника с осями симметрии - вершинами гипербол; прямые , проходящие через противоположные вершины основного прямоугольника – асимптотами гипербол .

Для построения гиперболы в системе координат : 1) отмечаем центр гиперболы ; 2) проводим через центр пунктирной линией оси симметрии гиперболы; 3) строим пунктиром основной прямоугольник гиперболы с центром и сторонами и параллельными осям симметрии; 4) проводим через противоположные вершины основного прямоугольника пунктирной линией прямые, являющиеся асимптотами гиперболы, к которым неограниченно близко, при бесконечном удалении от начала координат, приближаются ветви гиперболы, не пересекая их; 5) изображаем сплошной линией ветви гиперболы (рис. 7) или гиперболы (рис. 8).

Рис.7 Рис.8

3а) - уравнение параболы с вершиной в точке и осью симметрии, параллельной координатной оси (рис. 9).

3б) - уравнение параболы с вершиной в точке и осью симметрии, параллельной координатной оси (рис. 10).

Для построения параболы в системе координат : 1) отмечаем вершину параболы ; 2) проводим через вершину пунктирной линией ось симметрии параболы; 3) изображаем сплошной линией параболу, направляя её ветвь, с учётом знака параметра параболы : при - в положительную сторону координатной оси, параллельной оси симметрии параболы (рис. 9а и 10а); при - в отрицательную сторону координатной оси (рис.9б и 10б) .

Рис. 9а Рис. 9б

Рис. 10а Рис. 10б

Тема 7. Множества. Числовые множества. Функция.

Под множеством понимают некоторую совокупность объектов любой природы, различимых между собой и мыслимую как единое целое. Объекты, составляющие множество называют его элементами . Множество может быть бесконечным (состоит из бесконечного числа элементов), конечным (состоит из конечного числа элементов), пустым (не содержит ни одного элемента). Множества обозначают: , а их элементы: . Пустое множество обозначают .

Множество называют подмножеством множества , если все элементы множества принадлежат множеству и пишут . Множества и называют равными , если они состоят из одних и тех же элементов и пишут . Два множества и будут равны тогда и только тогда, когда и .

Множество называют универсальным (в рамках данной математической теории), если его элементами являются все объекты, рассматриваемые в данной теории.

Множество можно задать: 1) перечислением всех его элементов, например: (только для конечных множеств); 2) заданием правила определения принадлежности элемента универсального множества , данному множеству : .

Объединением

Пересечением множеств и называется множество

Разностью множеств и называется множество

Дополнением множества (до универсального множества ) называется множество .

Два множества и называются эквивалентными и пишут ~ , если между элементами этих множеств может быть установлено взаимно однозначное соответствие. Множество называется счётным , если оно эквивалентно множеству натуральных чисел : ~ . Пустое множество по определению относится к счётным.

Понятие мощности множества возникает при сравнении множеств по числу содержащихся в них элементов. Мощность множества обозначают . Мощностью конечного множества является число его элементов.

Эквивалентные множества обладают равной мощностью. Множество называется несчётным , если его мощность больше мощности множества .

Действительным (вещественным) числом называется бесконечная десятичная дробь, взятая со знаком «+» или « ». Действительные числа отождествляют с точками числовой прямой. Модулем (абсолютной величиной) действительного числа называется неотрицательное число:

Множество называется числовым , если его элементами являются действительные числа.Числовыми промежутками называются множества чисел: , , , , , , , , .

Множество всех точек на числовой прямой, удовлетворяющих условию , где - сколь угодно малое число, называется -окрестностью (или просто окрестностью) точки и обозначается . Множество всех точек условием , где - сколь угодно большое число, называется -окрестностью (или просто окрестностью) бесконечности и обозначается .

Величина, сохраняющая одно и тоже числовое значение, называется постоянной . Величина, принимающая различные числовые значения, называется переменной. Функцией называется правило, по которому каждому числу ставится в соответствие одно вполне определённое число , и пишут . Множество называется областью определения функции, - множеством (или областью) значений функции, - аргументом , - значением функции . Наиболее распространённым способом задания функции является аналитический способ, при котором функция задаётся формулой. Естественной областью определения функции называется множество значений аргумента , для которого данная формула имеет смысл. Графиком функции , в прямоугольной системе координат , называется множество всех точек плоскости с координатами , .

Функция называется чётной на множестве , симметричном относительно точки , если для всех выполняется условие: и нечётной , если выполняется условие . В противном случае - функция общего вида или ни чётная, ни нечётная .

Функция называется периодической на множестве , если существует число (период функции ), такое, что для всех выполняется условие: . Наименьшее число называется основным периодом.

Функция называется монотонно возрастающей (убывающей ) на множестве , если большему значению аргумента соответствует большее (меньшее) значение функции .

Функция называется ограниченной на множестве , если существует число , такое, что для всех выполняется условие: . В противном случае функция - неограниченная .

Обратной к функции , , называется такая функция , которая определена на множестве и каждому

Ставит в соответствие такое , что . Для нахождения функции , обратной к функции , нужно решить уравнение относительно . Если функция , является строго монотонной на , то она всегда имеет обратную, при этом, если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Функция , представляемая в виде , где , - некоторые функции такие, что область определения функции содержит всё множество значений функции , называется сложной функцией независимого аргумента . Переменную называют при этом промежуточным аргументом. Сложную функцию называют также композицией функций и , и пишут: .

Основными элементарными функциями считаются: степенная функция , показательная функция ( , ), логарифмическая функция ( , ), тригонометрические функции , , , , обратные тригонометрические функции , , , . Элементарной называется функция, полученная из основных элементарных функций конечным числом их арифметических операций и композиций.

Если задан график функции , , то построение графика функции сводится к ряду преобразований (сдвиг, сжатие или растяжение, отображение) графика :

1) 2) преобразование симметрично отображает график , относительно оси ; 3) преобразование сдвигает график по оси на единиц ( - вправо, - влево); 4) преобразование сдвигает график по оси на единиц ( - вверх, - вниз); 5) преобразование график вдоль оси растягивает в раз, если или сжимает в раз, если ; 6) преобразование график вдоль оси сжимает в раз, если или растягивает в раз, если .

Последовательность преобразований при построении графика функции можно представить символически в виде:

Примечание. При выполнении преобразования следует иметь в виду, что величина сдвига вдоль оси определяется той константой, которая прибавляется непосредственно к аргументу , а не к аргументу .

Графиком функции является парабола с вершиной в точке , ветви которой направлены вверх, если или вниз, если . Графиком дробно-линейной функции является гипербола с центром в точке , асимптоты которой проходят через центр, параллельно осям координат. , удовлетворяющих условию. называется.

Рассмотрим произведение векторов , и , составленное следующим образом:
. Здесь первые два вектора перемножаются векторно, а их результат скалярно на третий вектор. Такое произведение называется векторно-скалярным, или смешанным, произведением трех векторов. Смешанное произведение представляет собой некоторое число.

Выясним геометрический смысл выражения
.

Теорема . Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком «плюс», если эти векторы образуют правую тройку, и со знаком «минус», если они образуют левую тройку.

Доказательство.. Построим параллелепипед, ребрами которого являются векторы , , и вектор
.

Имеем:
,
, где - площадь параллелограмма, построенного на векторах и ,
для правой тройки векторов и
для левой, где
- высота параллелепипеда. Получаем:
, т.е.
, где - объем параллелепипеда, образованного векторами , и .

Свойства смешанного произведения

1. Смешанное произведение не меняется при циклической перестановке его сомножителей, т.е. .

Действительно, в этом случае не изменяется ни объем параллелепипеда, ни ориентация его ребер.

2. Смешанное произведение не меняется при перемене местами знаков векторного и скалярного умножения, т.е.
.

Действительно,
и
. Знак в правой части этих равенств берем один и тот же, так как тройки векторов , , и , , - одной ориентации.

Следовательно,
. Это позволяет записывать смешанное произведение векторов
в виде
без знаков векторного, скалярного умножения.

3. Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей, т.е.
,
,
.

Действительно, такая перестановка равносильна перестановке сомножителей в векторном произведении, меняющей у произведения знак.

4. Смешанное произведение ненулевых векторов , и равно нулю тогда и только тогда, когда они компланарны.

2.12. Вычисление смешанного произведения в координатной форме в ортонормированном базисе

Пусть заданы векторы
,
,
. Найдем их смешанное произведение, используя выражения в координатах для векторного и скалярного произведений:

. (10)

Полученную формулу можно записать короче:

,

так как правая часть равенства (10) представляет собой разложение определителя третьего порядка по элементам третьей строки.

Итак, смешанное произведение векторов равно определителю третьего порядка, составленному из координат перемножаемых векторов.

2.13.Некоторые приложения смешанного произведения

Определение взаимной ориентации векторов в пространстве

Определение взаимной ориентации векторов , и основано на следующих соображениях. Если
, то , , - правая тройка; если
, то , , - левая тройка.

Условие компланарности векторов

Векторы , и компланарны тогда и только тогда, когда их смешанное произведение равно нулю (
,
,
):

векторы , , компланарны.

Определение объемов параллелепипеда и треугольной пирамиды

Нетрудно показать, что объем параллелепипеда, построенного на векторах , и вычисляется как
, а объем треугольной пирамиды, построенной на этих же векторах, равен
.

Пример 1. Доказать, что векторы
,
,
компланарны.

Решение. Найдем смешанное произведение этих векторов по формуле:

.

Это и означает, что векторы
компланарны.

Пример 2. Даны вершины тетраэдра: (0, -2, 5), (6, 6, 0), (3, -3, 6),
(2, -1, 3). Найти длину его высоты, опущенной из вершины .

Решение. Найдем сначала объем тетраэдра
. По формуле получаем:

Так как определитель равен отрицательному числу, то в данном случае перед формулой нужно взять знак минус. Следовательно,
.

Искомую величину h определим из формулы
, где S – площадь основания. Определим площадь S :

где

Поскольку

Подставляя в формулу
значения
и
, получим h = 3.

Пример 3. Образуют ли векторы
базис в пространстве? Разложить вектор
по базису векторов .

Решение. Если векторы образуют базис в пространстве, то они не лежат в одной плоскости, т.е. являются некомпланарными. Найдем смешанное произведение векторов
:
,

Следовательно, векторы не компланарны и образуют базис в пространстве. Если векторы образуют базис в пространстве, то любой вектор можно представить в виде линейной комбинации базисных векторов, а именно
,где
координаты вектора в базисе векторов
. Найдем эти координаты, составив и решив систему уравнений

.

Решая ее методом Гаусса, имеем

Отсюда
. Тогда .

Таким образом,
.

Пример 4. Вершины пирамиды находятся в точках:
,
,
,
. Вычислить:

а) площадь грани
;

б) объем пирамиды
;

в) проекцию вектора
на направление вектора
;

г) угол
;

д) проверить, что векторы
,
,
компланарны.

Решение

а) Из определения векторного произведения известно, что:

.

Находим векторы
и
, используя формулу

,
.

Для векторов, заданных своими проекциями, векторное произведение находится по формуле

, где
.

Для нашего случая

.

Длину полученного вектора находим, используя формулу

,
.

и тогда
(кв. ед.).

б) Смешанное произведение трех векторов по абсолютной величине равно объему параллелепипеда, построенного на векторах , , как на ребрах.

Смешанное произведение вычисляется по формуле:

.

Найдем векторы
,
,
, совпадающие с ребрами пирамиды, сходящимися к вершине :

,

,

.

Смешанное произведение этих векторов

.

Так как объем пирамиды равен части объема параллелепипеда, построенного на векторах
,
,
, то
(куб. ед.).

в) Используя формулу
, определяющую скалярное произведение векторов , , можно записать так:

,

где
или
;

или
.

Для нахождения проекции вектора
на направление вектора
находим координаты векторов
,
, а затем, применяя формулу

,

получаем

г) Для нахождения угла
определяем векторы
,
, имеющие общее начало в точке :

,

.

Затем по формуле скалярного произведения

,

д) Для того чтобы три вектора

,
,

были компланарны, необходимо и достаточно, чтобы их смешанное произведение было равно нулю.

В нашем случае имеем
.

Следовательно, векторы компланарны.

Для векторов , и , заданных координатами , , смешанное произведение вычисляется по формуле: .

Смешанное произведение применяют: 1) для вычисления объёмов тетраэдра и параллелепипеда, построенных на векторах , и , как на рёбрах, по формуле: ; 2) в качестве условия компланарности векторов , и : и - компланарны.

Тема 5. Линии на плоскости.

Нормальным вектором прямой , называется всякий ненулевой вектор перпендикулярный данной прямой. Направляющим вектором прямой , называется всякий ненулевой вектор параллельный данной прямой.

Прямая на плоскости в системе координат может быть задана уравнением одного из следующих видов:

1) - общее уравнение прямой, где - нормальный вектор прямой;

2) - уравнение прямой, проходящей через точку перпендикулярно данному вектору ;

3) - уравнение прямой, проходящей через точку параллельно данному вектору (каноническое уравнение );

4) - уравнение прямой, проходящей через две данные точки , ;

5) - уравнения прямой с угловым коэффициентом , где - точка через которую прямая проходит; () – угол, который прямая составляет с осью ; - длина отрезка (со знаком ), отсекаемого прямой на оси (знак « », если отрезок отсекается на положительной части оси и « », если на отрицательной).

6) - уравнение прямой в отрезках, где и - длины отрезков (со знаком ), отсекаемых прямой на координатных осях и (знак « », если отрезок отсекается на положительной части оси и « », если на отрицательной).

Расстояние от точки до прямой , заданной общим уравнением на плоскости, находится по формуле:

Угол , ( ) между прямыми и , заданными общими уравнениями или уравнениями с угловым коэффициентом, находится по одной из следующих формул:

Если или .

Если или

Координаты точки пересечения прямых и находятся как решение системы линейных уравнений: или .

Тема 10. Множества. Числовые множества. Функции.

Под множеством понимают некоторую совокупность объектов любой природы, различимых между собой и мыслимую как единое целое. Объекты, составляющие множество называют его элементами . Множество может быть бесконечным (состоит из бесконечного числа элементов), конечным (состоит из конечного числа элементов), пустым (не содержит ни одного элемента). Множества обозначают: , а их элементы: . Пустое множество обозначают .

Множество называют подмножеством множества , если все элементы множества принадлежат множеству и пишут .

Множества и называют равными , если они состоят из одних и тех же элементов и пишут . Два множества и будут равны тогда и только тогда, когда и .



Множество называют универсальным (в рамках данной математической теории), если его элементами являются все объекты, рассматриваемые в данной теории.

Множество можно задать: 1) перечислением всех его элементов, например: (только для конечных множеств); 2) заданием правила определения принадлежности элемента универсального множества , данному множеству : .

Объединением

Пересечением множеств и называется множество

Разностью множеств и называется множество

Дополнением множества (до универсального множества ) называется множество .

Два множества и называются эквивалентными и пишут ~ , если между элементами этих множеств может быть установлено взаимно однозначное соответствие. Множество называется счётным , если оно эквивалентно множеству натуральных чисел : ~ . Пустое множество по определению относится к счётным.

Действительным (вещественным) числом называется бесконечная десятичная дробь, взятая со знаком «+» или « ». Действительные числа отождествляют с точками числовой прямой.

Модулем (абсолютной величиной) действительного числа называется неотрицательное число:

Множество называется числовым , если его элементами являются действительные числа. Числовыми промежутками называются множества

чисел: , , , , , , , , .

Множество всех точек на числовой прямой, удовлетворяющих условию , где - сколь угодно малое число, называется -окрестностью (или просто окрестностью) точки и обозначается . Множество всех точек условием , где - сколь угодно большое число, называется -окрестностью (или просто окрестностью) бесконечности и обозначается .



Величина, сохраняющая одно и тоже числовое значение, называется постоянной . Величина, принимающая различные числовые значения, называется переменной. Функцией называется правило, по которому каждому числу ставится в соответствие одно вполне определённое число , и пишут . Множество называется областью определения функции, - множеством (или областью) значений функции, - аргументом , - значением функции . Наиболее распространённым способом задания функции является аналитический способ, при котором функция задаётся формулой. Естественной областью определения функции называется множество значений аргумента , для которого данная формула имеет смысл. Графиком функции , в прямоугольной системе координат , называется множество всех точек плоскости с координатами , .

Функция называется чётной на множестве , симметричном относительно точки , если для всех выполняется условие: и нечётной , если выполняется условие . В противном случае - функция общего вида или ни чётная, ни нечётная .

Функция называется периодической на множестве , если существует число (период функции ), такое, что для всех выполняется условие: . Наименьшее число называется основным периодом.

Функция называется монотонно возрастающей (убывающей ) на множестве , если большему значению аргумента соответствует большее (меньшее) значение функции .

Функция называется ограниченной на множестве , если существует число , такое, что для всех выполняется условие: . В противном случае функция - неограниченная .

Обратной к функции , , называется такая функция , которая определена на множестве и каждому ставит в соответствие такое , что . Для нахождения функции , обратной к функции , нужно решить уравнение относительно . Если функция , является строго монотонной на , то она всегда имеет обратную, при этом, если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Функция , представляемая в виде , где , - некоторые функции такие, что область определения функции содержит всё множество значений функции , называется сложной функцией независимого аргумента . Переменную называют при этом промежуточным аргументом. Сложную функцию называют также композицией функций и , и пишут: .

Основными элементарными функциями считаются: степенная функция , показательная функция ( , ), логарифмическая функция ( , ), тригонометрические функции , , , , обратные тригонометрические функции , , , . Элементарной называется функция, полученная из основных элементарных функций конечным числом их арифметических операций и композиций.

Графиком функции является парабола с вершиной в точке , ветви которой направлены вверх, если или вниз, если .

В некоторых случаях при построении графика функции целесообразно разбить её область определения на несколько непересекающихся промежутков и последовательно строить график на каждом из них.

Всякий упорядоченный набор из действительных чисел называется точкой -мерного арифметического (координатного) пространства и обозначается или , при этом числа называются её координатами .

Пусть и - некоторые множества точек и . Если каждой точке ставится в соответствие по некоторому правилу одно вполне определённое действительное число , то говорят, что на множестве задана числовая функция от переменных и пишут или кратко и , при этом называется областью определения , - множеством значений , - аргументами (независимыми переменными) функции.

Функцию двух переменных часто обозначают , функцию трёх переменных - . Область определения функции представляет собой некоторое множество точек плоскости, функции - некоторое множество точек пространства.

Тема 7. Числовые последовательности и ряды. Предел последовательности. Предел функции и непрерывность.

Если каждому натуральному числу по некоторому правилу поставлено в соответствие одно вполне определённое действительное число , то говорят, что задана числовая последовательность . Кратко обозначают . Число называется общим членом последовательности . Последовательность называют также функцией натурального аргумента. Последовательность всегда содержит бесконечно много элементов, среди которых могут быть равные.

Число называется пределом последовательности , и пишут , если для любого числа найдётся номер такой, что при всех выполняется неравенство .

Последовательность , имеющая конечный предел, называется сходящейся , в противном случае – расходящейся .

: 1) убывающей , если ; 2) возрастающей , если ; 3) неубывающей , если ; 4) невозрастающей , если . Все вышеперечисленные последовательности называются монотонными .

Последовательность называется ограниченной , если существует число такое, что для всех выполняется условие: . В противном случае последовательность - неограниченная .

Всякая монотонная ограниченная последовательность имеет предел (теорема Вейерштрасса) .

Последовательность называется бесконечно малой , если . Последовательность называется бесконечно большой (сходящейся к бесконечности), если .

Числом называется предел последовательности , где

Постоянную называют неперовым числом. Логарифм числа по основанию называется натуральным логарифмом числа и обозначается .

Выражение вида , где - последовательность чисел, называется числовым рядом и обозначатся . Сумма первых членов ряда называется -ой частичной суммой ряда.

Ряд называется сходящимся , если существует конечный предел и расходящимся , если предел не существует. Число называется суммой сходящегося ряда , при этом пишут .

Если ряд сходится, то (необходимый признак сходимости ряда ) . Обратное утверждение неверно.

Если , то ряд расходится (достаточный признак расходимости ряда ).

Обобщённым гармоническим рядом называют ряд , который сходится при и расходится при .

Геометрическим рядом называют ряд , который сходится при , при этом его сумма равна и расходится при . найдётся число или символ. (левой полуокрестности, правой полуокрестности) и