Кто первый описал фазы мейоза. Стадии мейоза

Мейоз — важнейший процесс клеточного деления, происходящего накануне формирования половых клеток и открытый еще в конце XIX в., долгое время оставался предметом пристального внимания весьма узкого круга цитологов. Он попал в поле зрения молекулярных биологов лишь в 90-х годах XX в. Бурному развитию исследований в этой области способствовали работы по молекулярной генетике модельных объектов, а также появление новых иммуноцитохимических методов, которые дали в руки исследователей удобный способ изучения белков, участвующих в мейозе .

У всех эукариот во время мейоза формируется субмикроскопическая структура, получившая название синаптонемный комплекс (от греч. synaptos — соединенный, пета — нить). Исследование молекулярной организации этого комплекса и его роли в мейозе показало, что он нужен для рекомбинации хромосом и редукции их числа. Об этом и пойдет речь в данной статье.

Но сначала напомним основные сведения о мейозе, состоящем из двух делений: мейоза I и мейоза II. В результате редукционного деления (мейоза I) число хромосом в дочерних клетках уменьшается в два раза по сравнению с набором хромосом родительской клетки. Это происходит потому, что количество ДНК в хромосомах удваивается только один раз перед мейозом I (рис. 1). Двукратная редукция числа хромосом в ходе формирования половых клеток позволяет при оплодотворении восстановить исходное (диплоидное) число хромосом и сохранить его постоянство. Для этого необходимо строгое разделение пар гомологичных хромосом между половыми клетками. При ошибках возникает анеуплоидия — нехватка или избыток хромосом, и этот дисбаланс приводит к гибели зародыша или тяжелым аномалиям развития (у человека к так называемым хромосомным болезням).

Структура и функция синаптонемного комплекса

Синаптонемный комплекс представляет собой две белковые оси гомологичных хромосом, соединяющихся с помощью белковой «застежки-молнии» (рис. 2). Зубцы «застежки» — это палочковидные димеры из параллельно уложенных и одинаково ориентированных белковых молекул с длинной α-спиралью в середине молекулы. У дрожжей S. cerevisiae — это белок Zip1, у млекопитающих и человека — SCP1 (SYCP1). Эти белки своими С-концами закреплены на хромосомных осях (латеральных элементах комплекса), а N-концами направлены навстречу друг другу, внутрь центрального пространства (рис. 3). На N-концах молекул находятся заряженные «шпоры» — чередующиеся пики плотностей положительных и отрицательных зарядов аминокислот (рис. 4), комплементарное взаимодействие которых обеспечивает прочную электростатическую связь зубцов.

Так называемое центральное пространство комплекса (щель между белковыми осями, заполненная зубцами «застежки», шириной около 100 нм), как и весь комплекс (его сечение — порядка 150-200 нм) в обычном световом микроскопе не видны, поскольку весь комплекс замаскирован хроматином. Впервые синаптонемный комплекс увидели на ультратонких (толщиной 0,8 мкм) срезах семенников речного рака и мыши с помощью просвечивающего электронного микроскопа. Его обнаружили в 1956 г. независимо друг от друга два американских исследователя — М. Мозес и Д. В. Фоссет .

Теперь при исследовании комплекса используют так называемый метод микроспредирования. Клетки семенников (или пыльников растений) после гипотонического шока помещают на пластиковую подложку, нанесенную на предметное стекло. Содержимое лопнувшей клетки фиксируется слабым раствором формальдегида и контрастируется солями тяжелых металлов (лучше всего — AgNО 3). Стекло просматривают в фазовоконтрастном микроскопе и по косвенным признакам выбирают клетки, которые должны содержать комплекс. Кружочек пленки с нужной клеткой подхватывают на металлическую сеточку и помещают ее в электронный микроскоп (рис. 5). По необходимости перед контрастированием клетки обрабатывают антителами к интересующим исследователя белкам. Эти антитела метят калиброванными гранулами коллоидного золота, которые хорошо видны в электронном микроскопе.

В ходе профазы мейоза I синаптонемный комплекс удерживает параллельно расположенные гомологичные хромосомы почти до момента их построения на экваторе клетки (метафаза I). Хромосомы соединяются с помощью синаптонемного комплекса на некоторое время (от 2 ч у дрожжей до 2-3 сут. у человека), в течение которого между гомологичными хромосомами совершается обмен гомологичными участками ДНК — кроссинговер . В кроссинговере, происходящем с частотой не менее одного события (чаще — два, реже три или четыре) на пару гомологичных хромосом, участвуют десятки специфичных для мейоза белков-ферментов.

Молекулярный механизм кроссинговера и его генетические последствия — это две большие темы, выходящие за рамки задач данного рассказа. Нас этот процесс интересует потому, что в результате него гомологичные хромосомы прочно связываются перекрещенными молекулами ДНК (хиазмами) и необходимость попарного удержания хромосомы с помощью синаптонемного комплекса отпадает (после завершения кроссинговера комплекс исчезает). Гомологичные хромосомы, соединенные хиазмами, выстраиваются на экваторе веретена клеточного деления и расходятся с помощью нитей веретена клеточного деления в разные клетки. После завершения мейоза число хромосом в дочерних клетках уменьшается вдвое.

Итак, только накануне мейоза I структура хромосом радикально меняется. Очень специфическая внутриядерная и межхромосомная структура — синаптонемный комплекс — возникает один раз в жизненном цикле организма на короткое время для попарного соединения гомологичных хромосом и кроссинговера, а затем демонтируется. Эти и многие другие события в ходе мейоза на молекулярном и субклеточном (ультраструктурном) уровнях обеспечиваются работой многочисленных белков, выполняющих структурные, каталитические и кинетические (моторные) функции.

Белки синаптонемного комплекса

Еще в далекие 70-е годы мы получили косвенные доказательства того, что синаптонемный комплекс формируется путем самосборки его элементов, которая может происходить и в отсутствие хромосом. Эксперимент поставила сама природа, а нам удалось его наблюдать. Оказалось, что у свиной аскариды в цитоплазме клеток, готовящихся к мейозу I, появляются пакеты или «штабеля» абсолютно правильно уложенных морфологических элементов синаптонемного комплекса (хотя в цитоплазме нет хромосом: они — в ядре). Поскольку на стадии подготовки клеток к мейозу в клеточных ядрах еще нет синаптонемного комплекса, появилось предположение о несовершенстве контроля очередности событий мейоза у этого примитивного организма. Избыток новосинтезированных белков в цитоплазме приводит к их полимеризации и возникновению структуры, не отличающейся от синаптонемного комплекса . Эта гипотеза получила подтверждение только в 2005 г. благодаря работе интернациональной группы исследователей, работающих в Германии и Швеции. Они показали, что если ген, кодирующий белок зубцов «застежки-молнии» млекопитающих (SCP1), внедрить в соматические клетки, растущие на искусственной питательной среде, и активировать его, то внутри культивируемых клеток возникает мощная сеть из белков SCP1, «застегнутых» между собой так же, как в центральном пространстве комплекса. Формирование слоя из сплошных белковых «застежек-молний» в культуре клеток означает, что предсказанная нами способность белков комплекса к самосборке доказана .

В 1989 и в 2001 гг. сотрудники нашей лаборатории О. Л. Коломиец и Ю. С. Федотова исследовали естественный «демонтаж» синаптонемных комплексов на завершающих этапах их существования. Этот многоэтапный процесс лучше всего удалось проследить на материнских клетках пыльцы в пыльниках ржи, где есть частичная синхронность мейоза . Выяснилось, что латеральные элементы комплекса демонтируются путем постепенного «раскручивания» белковой суперспирали, имеющей три уровня упаковки (рис. 6).

Основа протяженных латеральных элементов — комплекс из четырех белков когезинов (от англ. cohesion — сцепление). Накануне мейоза в хромосомах появляется специфичный белок когезин Rec8, который заменяет соматический когезин Rad21. Затем к нему присоединяются три других белка-когезина, присутствующие и в соматических клетках, но вместо соматического когезина SMC1 появляется специфический для мейоза белок SMC1b (его N-конец на 50% отличается от N-конца соматического белка SMC1). Этот когезиновый комплекс располагается внутри хромосомы между двумя сестринскими хроматидами, удерживая их вместе. С комплексом когезинов связываются мейоз-специфичные белки, которые становятся мажорными белками хромосомных осей и превращают их (эти оси) в латеральные элементы синаптонемного комплекса . У млекопитающих мажорные белки синаптонемного комплекса — SCP2 и SCP3, у дрожжей белки Hop1 и Red1, а мейоз-специфичный белок — Rec8.

Эволюционный парадокс белков

У млекопитающих и дрожжей белки синаптонемного комплекса имеют разные аминокислотные последовательности, но их вторичная и третичная структуры одинаковы. Так, белок «застежки-молнии» SCP1 у млекопитающих и негомологичный ему белок Zip1 у дрожжей построены по единому плану. Они состоят из трех аминокислотных доменов: центральный — α-спираль, способная к формированию спирали второго порядка (суперспирализации), и два концевых домена — глобулы. Мажорные белки SCP2 и SCP3, не имеющие никакой гомологии с белками Hop1 и Red1 дрожжей и, видимо, с еще недостаточно изученными белками комплекса у растений, также строят морфологически и функционально одинаковые структуры синаптонемного комплекса . Это значит, что первичная структура (последовательность аминокислот) этих белков — эволюционно нейтральный признак.

Итак, негомологичные белки у эволюционно далеких организмов строят синаптонемный комплекс по единому плану. Объясняя этот феномен, воспользуюсь аналогией со строительством домов из разных материалов, но по единому плану Важно, чтобы в таких домах были стены, перекрытия, крыша и чтобы строительные материалы соответствовали условиям прочности. Равным образом, при формировании синаптонемного комплекса необходимы латеральные элементы («стены»), поперечные филаменты (зубцы «застежки-молнии») — «перекрытия» и центральное пространство (помещение для «кухни»). Там должны поместиться «кухонные роботы» — комплексы ферментов рекомбинации, собранные в так называемые «рекомбинационные узелки».

Ширина центрального пространства синаптонемного комплекса у дрожжей, кукурузы и человека составляет примерно 100 нм. Это обусловлено длиной односпиральных участков ДНК, покрытых белком рекомбинации Rad51. Этот белок относится к группе ферментов (подобных бактериальному белку рекомбинации RecA), которые сохраняют гомологию со времен появления рекомбинации молекул ДНК (примерно 3,5 млрд лет назад). Неизбежность гомологии белков рекомбинации у далеких организмов определяется их функцией: они взаимодействуют с двойной спиралью ДНК (одинаковой у бактерий и млекопитающих), разделяя ее на односпиральные нити, покрывают их белковым чехлом, переносят одну нить в гомологичную хромосому и там снова восстанавливают двойную спираль. Естественно, что большинство ферментов, участвующих в этих процессах, сохраняют гомологию более 3 млрд лет. В противоположность им синаптонемные комплексы, появившиеся у эукариот после возникновения мейоза (около 850 млн лет назад), построены из негомологичных белков... но схема их доменного строения одинакова. Откуда взялась эта схема?

Подсказкой служит упомянутый белок Rec8, с которого начинается формирование хромосомных осей в цикле мейоза и который есть у всех изученных организмов. Можно предположить, что строительным материалом для осей мейотических хромосом и латеральных элементов синаптонемного комплекса могут быть любые итермедиатные белки, которые способны образовывать волокнистую структуру (SCP2, Hop1 и др.), взаимодействовать с когезином Rec8 и «осаждаться» на нем, как бетон на металлической арматуре.

В последние годы, испытывая трудности в проведении экспериментальной работы из-за недостаточного финансирования, мы стали активно использовать методы биоинформатики. Нас интересовал белок «застежки-молнии» у дрозофилы. Учитывая сходство вторичной и третичной структур белков Zip1 дрожжей и SCP1 человека, мы предположили, что белок «застежки-молнии» у дрозофилы имеет такое же строение. Мы приступили к работе в 2001 г., когда геном дрозофилы уже был секвенирован и стало известно, что в нем имеется примерно 13 тыс. потенциальных генов. Как же найти ген для искомого нами белка?

Среди 125 известных к тому времени генов мейоза у дрозофилы мы предвидели лишь одного кандидата на эту роль. Дело в том, что мутация гена c(3)G лишала хромосомы способности соединяться попарно с помощью «застежки-молнии» и вступать в рекомбинацию. Мы предположили, что у мутантов дефектен белок, формирующий субмикроскопические зубцы «застежки». Вторичная структура и конформация искомого белка должна быть аналогична белкам Zip1 и SCP1.

Зная, что ген c(3)G находится у дрозофилы в хромосоме 3, мы искали в базе данных об этом районе (составляющем 700 тыс. пар нуклеотидов) такую открытую рамку считывания, которая могла бы кодировать похожий белок. Мы понимали, что при отсутствии гомологии в первичной структуре искомого белка и дрожжевого их размер, организация (из трех доменов) и способность центрального домена формировать α-спираль определенной длины (около 40 нм) должны быть аналогичными. Об этом говорило сходство электронно-микроскопической картины синаптонемного комплекса в мейозе у дрожжей и у дрозофилы.

Просмотрели открытые рамки считывания почти для 80 генов в районе поиска. С помощью компьютерных программ, позволяющих прогнозировать вторичную структуру виртуального белка, его физико-химические свойства и распределение электростатических зарядов в молекулах, Т. М. Гришаева нашла такую рамку считывания на границе зоны локализации гена c(3)G. (Это не очень точно предсказали японские генетики на микроскопической карте хромосом.) Им оказался ген CG1J604 по геномной карте компании «Селера».

Мы заключили, что этот виртуальный ген должен быть давно известным геном c(3)G и кодировать белок, аналогичный белку Zip1 дрожжей. В ответ на наше сообщение мы получили электронное письмо из США от С. Хоули. Он экспериментально доказал, что ген c(3)G кодирует белок, формирующий «застежку-молнию» между хромосомами в мейозе у дрозофилы . Результаты наших работ совпали, но экспериментальная работа группы Хоули заняла около семи лет, а наша компьютерная работа силами трех человек — лишь около трех месяцев. Статьи вышли из печати одновременно. В 2003 г. мы опубликовали метод наших компьютерных поисков и привели примеры аналогичных виртуальных белков у других организмов . Эту работу сейчас охотно цитируют зарубежные коллеги, и наш метод успешно работает в их руках в сочетании с экспериментальной проверкой. Так, в 2005 г. группа английских биологов обнаружила ген и белок зубцов «застежки-молнии» у растения Arabidopsis thaliana .

В заключение приведу пример еще одной находки в области молекулярной биологии мейоза, но надо начать с митоза. Для того чтобы в анафазе митоза хроматиды разошлись, нужно разрушить «склеивающий» их когезин. Гидролиз когезинов во время митоза — это генетически программируемое событие. А вот в метафазе мейоза I, когда гомологичные хромосомы выстроены на экваторе клетки и белковое веретено готово растащить их к полюсам, гидролиз когезинов оказывается невозможным. Именно поэтому обе хроматиды каждой хромосомы, склеенные между собой в области кинетического центра хромосом (кинетохора), направляются к одному полюсу (см. рис. 1). В конце 90-х годов японские исследователи, изучая мейоз у дрожжей, установили, что в районе кинетохора когезины защищены белком, названным ими шугошином (корень этого термина взят из лексикона самураев и означает защиту). Очень быстро мировое сообщество исследователей мейоза пришло к выводу, что аналогичные белки-шугошины есть у дрозофилы, у кукурузы и у других объектов. При этом гены, «запрещающие» разъединение хроматид в мейозе I у дрозофилы, были известны лет за 10 до этого, но их белковый продукт не был расшифрован. А в 2005 г. группа американских исследователей из Калифорнийского университета в Беркли, среди которых и наша соотечественница и моя давняя коллега по исследованию мейоза И. Н. Голубовская, сообщила, что во время метафазы I мейоза в хромосомах кукурузы шугошин ZmSGO1 расположен по обе стороны от кинетохоров, причем появляется он в этом районе только в том случае, если там уже есть когезин Rec8, которого он и защищает от гидролиза (но только в мейозе I). Эти результаты получены с помощью флюоресцирующих антител к белкам и конфокального микроскопа . Остается добавить, что японские исследователи тут же сообщили, что шугошин защищает Rec8 от гидролиза, если шугошин дефосфорилирован. Фосфорилирование и дефосфорилирование, так же как ацетилирование и деацетилирование, — важные модификации, меняющие свойства белковых молекул.

Прикладной аспект

Все рассказанное — красивая фундаментальная наука, а можно ли использовать эти знания в практических целях? Можно. Еще в середине 80-х годов британские исследователи и наша лаборатория на разных экспериментальных моделях доказали, что, используя микроспреды синаптонемных комплексов, можно выявить в два раза больше хромосомных перестроек (делеций, транслокаций, инверсий) по сравнению с традиционным методом анализа хромосом на стадии метафазы (рис. 7). Дело в том, что синаптонемный комплекс — скелетная структура мейотических хромосом в профазе. В это время хромосомы примерно в 10 раз длиннее, что значительно повышает разрешающую способность анализа. Однако исследовать запутанные в клубок профазные хромосомы практически невозможно, а жесткие скелетные структуры си-наптонемного комплекса не боятся распластывания, и, кроме того, электронный микроскоп способен различать миниаберрации, недоступные световому микроскопу.

Мы задались вопросом: можно ли установить причину стерильности потомства облученных мышей, изучая не хромосомы, а синаптонемный комплекс? Оказалось, что у стерильных мышей, унаследовавших от родителей хромосомные транслокации, эти перестройки выявляются с помощью комплекса в 100% исследуемых клеток, а при обычных методах «метафазного» анализа — лишь в 50% клеток . Группа испанских исследователей обследовала более 1 тыс. мужчин, страдающих бесплодием. У трети из них причину бесплодия ранее не удавалось установить, а изучение синаптонемного комплекса из клеток семенников этих пациентов позволило половине из них поставить диагноз: причина бесплодия в отсутствии синаптонемного комплекса, из-за чего сперматоциты (клетки-предшественники сперматозоидов) не развиваются, т. е. наблюдался «арест» процесса мейоза и всего сперматогенеза . Аналогичные результаты получены О. Л. Коломиец совместно с врачами из Харькова. Исследование синаптонемного комплекса в сочетании с другими методами анализа повышает процент выявления причин бесплодия у обследованных пациентов-мужчин с 17 до 30% . Некоторые английские клиники уже в 90-х годах XX в. активно использовали подобные методы. Такая диагностика, конечно, требует высокой теоретической и практической квалификации врачей и использования электронных микроскопов. Российские лаборатории еще не достигли такого уровня, за исключением Института общей генетики им. Н. И. Вавилова РАН (Москва) и Института цитологии и генетики СО РАН (Новосибирск).

Можно думать, что интенсивные исследования механизмов мейоза неизбежно приведут к применению полученных знаний в тех областях биологии и медицины, которые связаны с фертильностью живых организмов, включая человека. Однако закон применения научных достижений на практике неизменен: «внедрять» что-либо силой — бесполезно. Практики сами должны следить за достижениями науки и использовать их. Именно такой подход применяют передовые фармакологические и биотехнологические фирмы.

От открытия мейоза (1885) до открытия синаптонемного комплекса (1956) прошло примерно 70 лет, а с 1956 г. до открытия белков синаптонемного комплекса (1986) — еще 30. За последующие 20 лет мы узнали структуру этих белков, кодирующие их гены, взаимодействие белков при построении и работе синаптонемных комплексов, в частности, их взаимодействие с белками-ферментами рекомбинации ДНК и т. д., т. е. больше, чем за предшествующий 30-летний период описательных цитологических исследований. Возможно, для расшифровки основных молекулярных механизмов мейоза потребуется не более двух десятков лет. История науки, как и всей цивилизации, характеризуется «сжатием времени», нарастающим уплотнением событий и открытий.

Литература:

  1. Page S.L., Hawley R.S. // Annu. Rev. Cell Develop. Biol. 2004. V. 20. P. 525-558.
  2. Moses M.J. //Chromosoma. 2006. V. 115. P. 152-154.
  3. Bogdanov Yu.F. // Chromosoma. 1977. V. 61. P. 1-21.
  4. OllingerR. et al. //Moll. Biol. Cell. 2005. V. 16. P. 212-217.
  5. Fedotova Y.S. et al. // Genome. 1989. V. 32. P. 816-823; Коломиец О.Л. и др. // Биологические мембраны. 2001. Т. 18. С. 230-239.
  6. Bogdanov Yu.F. et al. // Int. Review. Cytol. 2007. V. 257. P. 83-142.
  7. Богданов Ю.Ф. // Онтогенез. 2004. T. 35. №6. C. 415-423.
  8. Grishaeva T.M. et al. // Drosophila Inform. Serv. 2001. V. 84. P. 84-89.
  9. Page S.L., Hawley R.S. // Genes Develop. 2001. V. 15. P. 3130-3143.
  10. Bogdanov Yu.F. et al. // In Silico Biol. 2003. V. 3. P. 173-185.
  11. Osman K. et al. // Chromosoma. 2006. V. 115. P. 212-219.
  12. Hamant O., Golubovskaya I. et al. // Curr. Biol. 2005. V. 15. P. 948-954.
  13. Kalikinskaya E.I. et al. // Mut. Res. 1986. V. 174. P. 59-65.
  14. Egozcue J. et al. // Hum. Genet. 1983. V. 65. P. 185-188; Carrara R. et al. // Genet. Mol. Biol. 2004. V. 27. P. 477-482.
  15. Богданов Ю.Ф., Коломиец О.Л. Синаптонемный комплекс. Индикатор динамики мейоза и изменчивости хромосом. М., 2007.

Мейомз (от др.-греч. меЯщуйт -- уменьшение) или редукционное деление клетки -- деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом -- образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора) . Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции, дупликации, инверсии или транслокации).

При мейозе происходит не только редукция числа хромосом до гаплоидного их числа, но происходит чрезвычайно важный генетический процесс - обмен участками между гомологичными хромосомами, процесс, получивший название кроссинговера.

Существует несколько разновидностей мейоза. При зиготном (характерном для аскомицетов, базимицетов, некоторых водорослей, споровиков и др.), для которых в жизненном цикле преобладает гаплоидная фаза, две клетки - гаметы сливаются, образуя зиготу с двойным (диплоидным) набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делиться, и образуется четыре гаплоидные клетки, которые продолжают размножаться.

Споровый тип мейоза встречается у высших растений, клетки которых имеют диплоидный набор хромосом. В данном случае в органах размножения растений, образовавшиеся после мейоза гаплоидные клетки еще несколько раз делятся. Другой тип мейоза, гаметный, происходит во время созревания гамет - предшественников зрелых половых клеток. Он встречается у многоклеточных животных, среди некоторых низших растений.

В случае гаметного мейоза характерно при развитии организма выделение клонов герминативных клеток, которые впоследствии будут дифференцироваться в половые клетки. И только клетки этих клонов будут при созревании подвергаться мейозу и превращаться в половые клетки. Следовательно, все клетки развивающихся многоклеточных животных организмов можно разделить на две группы: соматические - из которых будут образовываться клетки всех тканей и органов, и герминативные, которые дадут начало половым клеткам.

Такое выделение герминативных клеток (гоноцитов) обычно происходит на ранних стадиях эмбрионального развития. Так, детерминация гоноцитов у рачка циклопа происходит уже на первом делении зиготы: одна из двух клеток дает начало герминальным клеткам. У аскариды герминативные клетки или клетки "зародышевого пути" (А.Вейсман) выделяются на стадии 16 бластомеров, у дрозофилы - на стадии бластоцисты, у человека - первичные половые клетки (гонобласты) появляются на 3-ей неделе эмбрионального развития в стенке желточного мешка в каудальном отделе эмбриона.

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • · Профаза I -- профаза первого деления очень сложная и состоит из 5 стадий:
  • · Лептотена или лептонема -- упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
  • · Зиготена или зигонема -- происходит конъюгация -- соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
  • · Пахитена или пахинема -- (самая длительная стадия) -- в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер -- обмен участками между гомологичными хромосомами.
  • · Диплотена или диплонема -- происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.
  • · Диакинез -- ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

  • · Метафаза I -- бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • · Анафаза I -- микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
  • · Телофаза I -- хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • · Профаза II -- происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.
  • · Метафаза II -- унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • · Анафаза II -- униваленты делятся и хроматиды расходятся к полюсам.
  • · Телофаза II -- хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

Что такое мейоз?

Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз обозначает уменьшение.

Данный процесс происходит в два этапа:

  • Редукционный ;

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

  • Эквационный ;

В ходе второго деления гаплоидность клеток сохраняется.

ТОП-4 статьи которые читают вместе с этой

Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

Фазы мейоза

В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

Первое деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Лептотена

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Зиготена

Гомологичные хромосомы соединяются в пары.

Пахитена

По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

Диплотена

Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

Диакинез

Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

Рис. 1. Схема мейоза первого этапа деления

Второе деление имеет такие признаки:

  • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
  • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
  • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

Рис. 2. Схема мейоза второго этапа деления

В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

Значение мейоза

В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза;

Рис. 3. Схема гаметогенеза

  • Осуществляет передачу генетического кода при размножении;
  • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

Что мы узнали?

Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 772.

Мейоз - это способ непрямого деления пер­вичных половых клеток (2п2с), в результате кото­рого образуются гаплоидные клетки (lnlc), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза (рис. 2.53). Первое деление мейоза (мейоз I) называется редук­ционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейозII) - эквационным, так как в его процессе количество хромосом сохраняется (см. табл. 2.5).

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профа­зу I, метафазу I, анафазу I и телофазу I. В профа­зе I происходят два важнейших процесса - конъ­югация и кроссинговер. Конъюгация - это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер - взаимный обмен гомологичными участками го­мологичных хромосом (рис. 2.54). В результате кроссинговера хро­мосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе ми­тоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикрепляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хро­матид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2с) генетически разнородны, по­скольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодина­ковые гены.

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток - 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного со­четания хромосом материнского и отцовского организмов в дочерних клетках.

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений - Э.Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900). Изучение мейоза продолжается до сих пор.

Биологическое значение мейоза

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация - появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость - появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).

Мейоз (у высших растений), имеет место накануне цветения и приводит к образованию гаплоидного гаметофита, в котором позднее образуются гаметы.