Релятивистская физика. Пространство - время в релятивистской физике Релятивистская физика используется при рассмотрении физических объектов

Релятивистская механика – это механика, в которую превращается механика Ньютона в случае если тело движется со скоростью, близкой к скорости света. На таких высоких скоростях с вещами начинают происходить ну просто волшебные и совершенно неожиданные вещи, такие как, например, релятивистское сокращение длины или замедление времени.

Но как именно классическая механика становится релятивистской? Обо всем по порядку в нашей новой статье.

Начнем с самого начала...

Принцип относительности Галилея

Принцип относительности Галилея (1564-1642) гласит:

В инерциальных системах отсчета все процессы протекают одинаково, если система неподвижна или движется равномерно и прямолинейно.

В данном случае речь идет исключительно о механических процессах. Что это значит? Это значит, что если мы, например, будем плыть на равномерно и прямолинейно движущемся пароме через туман, мы не сможем определить, движется паром или покоится. Иными словами, если провести эксперимент в двух одинаковых замкнутых лабораториях, одна из которых равномерно и прямолинейно движется относительно другой, результат эксперимента будет одинаковым.


Преобразования Галилея

Преобразования Галилея в классической механике – это преобразования координат и скорости при переходе от одной инерциальной системы отсчета к другой. Не будем приводить здесь всех вычислений и выводов, а просто запишем формулу для преобразования скорости. Согласно этой формуле скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела в движущейся системе отсчета и скорости движущейся системы отсчета относительно неподвижной.

Приведенный нами выше принцип относительности Галилея является частным случаем принципа относительности Эйнштейна.

Принцип относительности Эйнштейна и постулаты СТО

В начале двадцатого века после более чем двухсотлетнего господства классической механики возник вопрос о распространении принципа относительности на немеханические явления. Причиной возникновения такого вопроса стало закономерное развитие физики, в частности оптики и электродинамики. Результаты многочисленных экспериментов то подтверждали справедливость формулировки принципа относительности Галилея для всех физических явлений, то в ряде случаев указывали на ошибочность преобразований Галилея.


Например, проверка формулы сложения скоростей показала ее ошибочность при скоростях, близких к скорости света. Более того, опыт Физо в 1881 году показал, что скорость света не зависит от скорости движения источника и наблюдателя, т.е. в любой системе отсчета остается постоянной. Данный результат эксперимента никак не укладывался в рамки классической механики.

Решение этой и других проблем нашел Альберт Эйнштейн. Для того чтобы теория сошлась с практикой, Эйнштейну пришлось отказаться от нескольких, казалось бы, очевидных истин классической механики. А именно - предположить, что расстояния и промежутки времени в различных системах отсчета не неизменны . Ниже приведем основные постулаты Специальной Теории Относительности (СТО) Эйнштейна:

Первый постулат: во всех инерциальных системах отсчета все физические явления протекают одинаково. При переходе от одной системы к другой все законы природы и явления, описывающие их, инвариантны, то есть никакими опытами нельзя отдать предпочтение одной из систем, ибо они инвариантны.

Второй постулат: с корость света в вакууме одинакова во всех направлениях и не зависит от источника и наблюдателя, т.е. не изменяется при переходе от одной инерциальной системы к другой.

Скорость света – предельная скорость. Никакой сигнал или действие не могут распространяться со скоростью, превышающей скорость света.

Преобразования координат и времени при переходе от неподвижной системы отсчета к системе, движущейся со скоростью света, называются преобразованиями Лоренца. К примеру, пусть одна система покоится, а вторая движется вдоль оси абсцисс.

Как видим, время также изменяется наряду с координатами, то есть выступает как бы в роли четвертной координаты. Преобразования Лоренца показывают, что в СТО пространство и время неразделимы в отличие от классической механики.

Помните парадокс двух близнецов, один из которых ждал на земле, а второй летел на космическом корабле с очень большой скоростью? После того как брат-космонавт вернулся на землю, он застал своего брата стариком, хотя сам был практически так же молод, как в момент начала путешествия. Типичный пример того, как изменяется время в зависимости от системы отсчета.


При скоростях же много меньших скорости света преобразования Лоренца переходят в преобразования Галилея. Даже при скорости современных реактивных самолетов и ракет отклонения от законов классической механики настолько малы, что их практически невозможно измерить.

Механика, учитывающая преобразования Лоренца, и называется релятивистской.

В рамках релятивистской механики меняются формулировки некоторых физических величин. Например, импульс тела в релятивистской механике в соответствии с преобразованиями Лоренца может быть записан так:

Соответственно, второй закон Ньютона в релятивистской механике будет иметь вид:

А полная релятивистская энергия тела в релятивистской механике равна

Если тело покоится и скорость равна нулю, данная формула преобразуется в знаменитую


Данная формула, которую, кажется, знают все, показывает, что масса является мерой полной энергии тела, а также иллюстрирует принципиальную возможность перехода энергии вещества в энергию излучения.

Дорогие друзья, на этой торжественной ноте мы закончим наш сегодняшний обзор релятивистской механики. Мы рассмотрели принцип относительности Галилея и Эйнштейна, а также некоторые основные формулы релятивистской механики. Самым стойким и дочитавшим статью до конца напоминаем – в мире нет «нерешабельных» задач и проблем, которые невозможно решить. Паниковать и переживать из-за незаконченной курсовой нет никакого смысла. Просто вспомните о масштабах Вселенной, вздохните полной грудью и поручите выполнение настоящим профессионалам своего дела –

Специальная теория относительности (СТО) рассматривает взаимосвязь физических процессов только в инерциальных системах отсчёта (СО), то есть в СО, которые движутся относительно друг друга равномерно прямолинейно.

Общая теория относительности (ОТО) рассматривает взаимосвязь физических процессов в неинерциальных СО, то есть в СО, которые ускоренно движутся относительно друг друга.

Пространство
характеризует взаимное расположение тел;
пространство однородно, имеет три измерения;
все направления в пространстве равноправны.

Время
характеризует последовательность событий;
время имеет одно измерение;
время однородно и изотропно.

Постулаты теории относительности:

1. Во всех инерциальных СО все физические явления происходят одинаково.

Т.е. все инерциальные СО равноправны . Никакие опыты в любой области физики не позволяют выделить абсолютную инерциальную СО.

2. Скорость света в вакууме одинакова во всех инерциальных СО и не зависит от скорости источника света и наблюдателя (т.е. скорость света в вакууме инвариантна ).

Скорость распространения света в вакууме является максимально возможной скоростью распространения или передачи любого взаимодействия:
с = 299792,5 км/с.

Относительность одновременности

Событие – это любое явление, происходящее в данной точке пространства в некоторый момент времени.
Задать событие означает задать точку в четырёхмерном пространстве «координаты – время», т.е. когда и где событие происходит.

В классической механике Ньютона время одинаково в любой инерциальной СО, то есть имеет абсолютное значение и не зависит от выбора СО .

В релятивистской механике время зависит от выбора СО .

События, происходящие одновременно в одной СО, могут не быть одновременными в другой СО, движущейся относительно первой.

Относительно двух часов, один из которых расположен на носу, а другой на корме корабля, событие (вспышка) происходит не одновременно. Часы А и Б синхронизированы и находятся на одинаковом расстоянии от источника света, расположенного между ними. Свет распространяется с одинаковой скоростью во всех направлениях, но часы фиксируют вспышку в разные моменты времени.

Пусть один наблюдатель находится внутри корабля (внутренний наблюдатель) в системе отсчёта К’, а второй вне корабля (внешний наблюдатель) в системе отсчёта К.
Система отсчёта К’ связана с кораблём и движется со скоростью v относительно неподвижной системы отсчёта К , которая связана с внешнем наблюдателем .

Если посередине корабля, который движется с некоторой скоростью v относительно внешнего наблюдателя, вспыхнет источник света, то для внутреннего наблюдателя свет достигает кормы и носа корабля одновременно . Т.е. в системе отсчёта К’ эти два события происходят одновременно.

Для внешнего наблюдателя корма будет «приближаться» к источнику света, а нос корабля — удаляться, и свет достигнет кормы раньше, чем носа корабля . Т.е. в системе отсчёта К эти два события происходят не одновременно.

Релятивистский закон сложения скоростей

Классический закон сложения скоростей в релятивистской механике применять нельзя (это противоречит второму постулату СТО), поэтому в СТО применяют релятивистский закон сложения скоростей.

Очевидно, что при скоростях, которые много меньше скорости света, релятивистский закон сложения скоростей принимает вид классического закона сложения скоростей.

Следствия постулатов теории относительности

1. Промежутки времени увеличиваются, время замедляется.

Замедление времени экспериментально показано при радиоактивном распаде ядер: радиоактивный распад ускоренных ядер замедлен по сравнению с радиоактивным распадом таких же покоящихся ядер.

2. Размеры тел уменьшаются в направлении движения.

Из формулы видно, что самую большую длину тело имеет в неподвижной СО. Изменение длины тела во время движения называется лоренцово сокращение длины .

Как связаны масса и энергия

В литературе знаменитую формулу Эйнштейна пишут в 4-х вариантах, что свидетельствует о не очень её глубоком понимании.

Оригинальная формула появилась в небольшой заметке Эйнштейна в 1905 году:

Эта формула имеет глубокий физический смысл. Она говорит о том, что масса тела, которое находится в состоянии покоя как целое, определяет содержание энергии в нём, независимо от природы этой энергии.

Например , внутренняя кинетическая энергия хаотического движения частиц, из которых состоит тело, входит в энергию покоя тела, в отличие от кинетической энергии поступательного движения. То есть, нагревая тело, мы увеличиваем его массу.
Также следует обратить внимание на то, что формула читается справа налево любая масса определяет энергию тела. Но не всякая энергия может быть поставлена в соответствие с какой-нибудь массой.

Также из формулы следует, что

изменение энергии тела прямо пропорционально изменению его массы:

В случае, когда тело начинает двигаться, энергия покоя переходит в полную энергию в СО, которая движется поступательно как целое с определённой скоростью v .

Рисунок 1. Релятивистская механика материальной точки. Автор24 - интернет-биржа студенческих работ

На таких сверхвысоких скоростях с физическими вещами начинают происходить совершенно неожиданные и волшебные процессы, такие как замедления времени и релятивистское сокращение длины.

В пределах исследования релятивистской механики меняются формулировки некоторых устоявшихся в физике физических величин.

Данная формула, которую знает практически каждый человек, показывает, что масса является абсолютной мерой энергии тела, а также демонстрирует принципиальную вероятность перехода энергетического потенциала вещества в энергию излучения.

Основной закон релятивистской механики в виде материальной точки записывается так же, как и второй закон Ньютона : $F=\frac{dp}{dT}$.

Принцип относительности в релятивистской механике

Рисунок 2. Постулаты теории относительности Эйнштейна. Автор24 - интернет-биржа студенческих работ

Принцип относительности Эйнштейна подразумевает инвариантность всех существующих законов природы по отношению к постепенному переходу от одной инерциальной концепции отсчета к другой. Это означает, что все описывающие природные законы формулы должны быть полностью инвариантны относительно преобразований Лоренца. К моменту возникновения СТО теория, удовлетворяющая данному условию, уже была представлена классическая электродинамика Максвелла. Однако все уравнения ньютоновской механики оказались абсолютно неинвариантными относительно других научных постулатов, и поэтому СТО требовала пересмотра и уточнения механических закономерностей.

В основу такого важного пересмотра Эйнштейн озвучил требования выполнимости закона сохранения импульса и внутренней энергии, которые находятся в замкнутых системах. Для того, чтобы принципы нового учения выполнялся во всех инерциальных концепциях отсчета, оказалось важным и первостепенным изменить определение самого импульса физического тела.

Если принять и использовать такое определение, то закон сохранения конечного импульса взаимодействующих активных частиц (например, при внезапных соударениях) начнет выполняться во всех инерциальных системах, непосредственно связанных преобразованиями Лоренца. При $β → 0$ релятивистский внутренний импульс автоматически переходит в классический. Масса $m$, входящая в основное выражение для импульса, является фундаментальная характеристика мельчайшей частицы, не зависящая от дальнейшего выбора концепции отсчета, а, следовательно, и от коэффициента ее движения.

Релятивистский импульс

Рисунок 3. Релятивистский импульс. Автор24 - интернет-биржа студенческих работ

Релятивистский импульс не пропорционален начальной скорости частицы, а его изменения не зависят от возможного ускорения взаимодействующих в инерциальной системе отчета элементов. Поэтому постоянная по направлению и модулю сила не вызывает прямолинейного равноускоренного движения. Например, в случае одномерного и плавного движения вдоль центральной оси x ускорение всех частицы под воздействием постоянной силы оказывается равным:

$a= \frac{F}{m}(1-\frac{v^2}{c^2})\frac{3}{2}$

Если скорость определенной классической частицы беспредельно увеличивается под действием стабильной силы, то скорость релятивистского вещества не может в итог превысить скорость света в абсолютной пустоте. В релятивистской механике, так же, как и в законах Ньютона, выполняется и реализуется закон сохранения энергии. Кинетическая энергия материального тела $Ek$ определяется через внешнюю работу силы, необходимую для сообщения в будущем заданной скорости. Чтобы разогнать элементарную частицу массы m из состояния покоя до скорости под влиянием постоянного параметра $F$, эта сила обязана совершить работу.

Чрезвычайно важный и полезный вывод релятивистской механики состоит в том, что находящаяся в постоянном покое масса $m$ содержит невероятный запас энергии. Это утверждение имеет различные практические применения, включая сферу ядерной энергии. Если масса любой частицы или системы элементов уменьшилась в несколько раз, то при этом должна выделиться энергия, равная $\Delta E = \Delta m c^2. $

Многочисленные прямые исследования предоставляют убедительные факты существования энергии покоя. Первое экспериментальное доказательства правильности соотношения Эйнштейна, которое связывает объем и массу, было получено при сравнении внутренней энергии, высвобождающейся при мгновенном радиоактивном распаде, с разностью коэффициентов конечных продуктов и исходного ядра.

Масса и энергия в релятивистской механике

Рисунок 4. Импульс и энергия в релятивистской механике. Автор24 - интернет-биржа студенческих работ

В классической механике масса тела не зависит от скорости движения. А в релятивистской она растёт с увеличением скорости. Это видно из формулы: $m=\frac{m_0}{√1-\frac{v^2}{c^2}}$.

  • $m_0$– масса материального тела в спокойном состоянии;
  • $m$ – масса физического тела в той инерциальной концепции отсчёта, относительно которой оно движется со скоростью $v$;
  • $с$ – скорость света в вакууме.

Отличие масс становится видным только при больших скоростях, приближающихся к скорости света.

Кинетическая энергия при конкретных скоростях, приближающихся к световой скорости, исчисляется как некая разность между кинетической энергией движущегося тела и кинетической энергией тела, находящегося в состоянии покоя:

$T=\frac{mc^2}{√1-\frac{v^2}{c^2}}$.

При скоростях, значительно меньших скорости света, это выражение переходит в формулу кинетической энергии классической механики: $T=\frac{1}{2mv^2}$.

Скорость света является всегда граничным значением. Быстрее света в принципе не может двигаться ни одно физическое тело.

Многие задачи и проблемы смогло бы решить человечество, если бы ученым удалось разработать универсальные аппараты, способные передвигаться со скоростью, приближающейся к скорости света. Пока же люди могут о таком чуде только мечтать. Но когда-нибудь полёт в космос или на другие планеты с релятивистской скоростью станет не вымыслом, а реальностью.

Все законы классической механики справедливы для тел, движущихся со скоростями, которые намного меньше скорости света в вакууме. Если же скорость движения сравнима со скоростью света, то изучением такого движения занимается релятивистская механика.

В своей работе «Механика» Ньютон предполагал, что существует абсолютное пространство и абсолютное время. Неподвижная пустота, в которой находится Вселенная, и есть абсолютное пространство. Оно остаётся всегда одинаковым и неподвижным. А в нём равномерно течёт абсолютное время. Но великий учёный не указал, как обнаружить это абсолютное пространство и как доказать, что оно существует. Он считал, что доказательством может служить распространение света в пустоте. Ведь лучше всего он распространяется там, где ему не препятствует непрозрачное вещество. И пустое пространство идеально подходит для этого.

Но если это так, то скорость света в таком пространстве должна быть разной для наблюдателей, находящихся в разных точках. Ведь в таком пространстве для любого механического движения должны выполняться преобразования Галилея, согласно которым скорости движения изменяются при переходе от одной инерциальной системы отсчёта к другой. В классической механике скорость автомобиля по отношению к наблюдателю, стоящему на обочине дороги, отличается от его скорости по отношению к другому автомобилю, который движется в попутном или встречном направлении. Так, по отношению к встречному автомобилю его скорость будет равна сумме скоростей обоих автомобилей, а по отношению к попутному – разности их скоростей. По аналогии можно предположить, что и скорость света должна была бы быть разной для наблюдателей, движущихся в направлении его распространения и навстречу ему.

Но на самом деле всё совершенно не так. Неважно, в каком направлении распространяется свет. Независимо от положения наблюдателя его скорость всегда остаётся постоянной - 299 792 458 м/с (приблизительно 300 000 000 м/с). Это скорость света в вакууме. Она остаётся постоянной и относительно неподвижного перрона, и относительно, поезда, находящегося в движении.

Объяснить это явление классическая механика не могла. Это оказалось под силу лишь релятивистской механике Эйнштейна, более совершенной, чем механика Ньютона.

Новое учение Ньютона

На смену классической механике пришла специальная теория относительности – новое учение о пространстве и времени.

В классической механике пространство трёхмерно. Его называют евклидовым, а для его описания используют пространственные координаты x, y и z. Время же считается абсолютной, независимой от пространства величиной. И оно всегда идёт с одинаковой скоростью, где бы ни находились часы. Так считали до тех пор, пока в 1905 г. Альберт Эйнштейн не опубликовал свою статью «К электродинамике движущихся тел». В ней он изложил свою новую теорию, в которой доказал, что для наблюдателей, находящихся в движении, время движется медленнее, чем для тех, которые находятся в состоянии покоя. А если бы можно было достичь скорости света, то время остановилось бы. Это была совершенно новая теория, перевернувшая все представления в физике.

Преобразования Галилея оказываются верными только для тех объектов, скорость которых значительно ниже скорости света. Но если их скорость приближается к скорости света, то начинают проявляться релятивистские эффекты.

Релятивистская механика считает пространство четырёхмерным. Каждая точка этого пространства имеет 4 координаты: длину, ширину, высоту и время. Все они равноправны. Время в такой системе уже не является постоянной величиной. Скорость его течения зависит от скорости движения системы отсчёта.

В разных системах отсчёта, которые находятся в движении относительно друг друга, пространство и время выглядят по-разному. Для пересчёта координат пространства и времени из одной системы в другую используются преобразования Лоренца. В формулах пересчёта координаты пространства зависят от координат времени и наоборот. То есть, пространство и время неразделимы.

Релятивистские эффекты

Из преобразований Лоренца вытекают релятивистский эффект замедления времени и лоренцово сокращение длины.

Замедление времени

Этот удивительный эффект заключается в том, что при скоростях, сравнимых со скоростями света, время течёт с разной скоростью. И чем выше скорость объекта, тем медленнее течёт в нём время.

Количественное значение замедления времени получают из преобразований Лоренца:

где ∆t - время, проходящее между двумя событиями движущегося объекта, за которым следит неподвижный наблюдатель,

∆t o - время, проходящее между двумя событиями движущегося объекта с точки зрения наблюдателя, находящегося в движении,

v - относительная скорость движения объекта,

c - скорость света в вакууме.

Из формулы видно, что ∆ to ˃ ∆ t . То есть, для наблюдателя, находящегося в движении, время движется медленнее, чем для того, который находятся в состоянии покоя.

Очень наглядно эффект замедления времени проявляется в космических полётах, где движение происходит с релятивистскими скоростями. Ведь время на борту космического корабля течёт медленнее, чем на Земле. Так, если аппарат будет двигаться со скоростью, равной 0,95 скорости света, его полёт будет длиться 12 земных лет, но по часам на самом корабле пройдёт всего 7,3 года. А если корабль будет находиться в полёте 64 года по своему времени, то на Земле за это время пробежит уже 5 млн. лет. И кто знает, возможно, не только ход часов, но и ход всех процессов в полёте будет замедленным. И в будущем, возвратившись на Землю из длительного полёта, космонавты могут обнаружить, что их дети оказались старше их.

Лоренцово сокращение длины

Это сокращение называют также релятивистским сокращением длины движущегося тела или масштаба.

Длина любого объекта в релятивистской механике зависит от скорости. Этот эффект проявляется в том, что для наблюдателя предметы, движущиеся относительно него, имеют меньшую длину, чем в реальности. И чем больше скорость движения предмета, тем меньшим он кажется. При скорости, приближающейся к скорости света, длина предмета вдоль направления движения приближается к нулю. Именно поэтому наблюдатель, следящий за шаром, движущимся с такой скоростью, вместо него увидит плоский диск.

Следует уточнить, что эффект сокращения длины наблюдается только при скоростях, близких к скорости света.

Масса в релятивистской механике

В классической механике масса тела не зависит от скорости движения. А в релятивистской она растёт с увеличением скорости. Это видно из формулы:


где m o – масса тела в состоянии покоя;

m – масса тела в той инерциальной системе отсчёта, относительно которой оно движется со скоростью v;

с – скорость света в вакууме.

Отличие масс становится видным только при больших скоростях, приближающихся к скорости света.

Законы сохранения в релятивистской механике

Импульс тела

Импульс тела в релятивистской механике выглядит так:

В релятивистской механике выполняется закон сохранения релятивистского импульса. Этот импульс в замкнутой системе не изменяется с течением времени.

Взаимосвязь между массой и энергией

Эйнштейн установил связь между массой и энергией в релятивистской механике:

В состоянии покоя энергия систему равна:

E o = m o c 2

В специальной теории относительности выполняется закон сохранения релятивистской массы и энергии:

∆m = ∆E/c 2

Всякое изменение энергии тела или системы сопровождается изменением массы.

В классической механике масса является мерой инертности системы, а в релятивистской и мерой энергосодержания.

Кинетическая энергия

Кинетическая энергия при скоростях, приближающихся к скорости света, вычисляется как разность между кинетической энергией движущегося тела и кинетической энергией тела, находящегося в состоянии покоя:

где m – масса объекта;

v – скорость движения объекта;

c - скорость света в вакууме;

mc 2 – энергия покоя.

Данную формулу можно привести к такому виду:

При скоростях, значительно меньших скорости света, это выражение переходит в формулу кинетической энергии классической механики:

T = 1/2mv 2

Скорость света является предельным значением. Быстрее света не может двигаться ни одно тело.

Многие задачи смогло бы решить человечество, если бы удалось создать аппараты, способные передвигаться со скоростью, близкой к скорости света. Пока люди об этом только мечтают. Но когда-нибудь полёт с релятивистской скоростью станет реальностью.