Инерциальной называется система отсчета. Инерциальные системы отсчета

Инерциальная система отсчёта

Инерциа́льная систе́ма отсчёта (ИСО) - система отсчёта , в которой справедлив первый закон Ньютона (закон инерции): все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся . Эквивалентной является следующая формулировка, удобная для использования в теоретической механике :

Свойства инерциальных систем отсчёта

Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности , все ИСО равноправны, и все законы физики инвариантны относительно перехода из одной ИСО в другую. Это значит, что проявления законов физики в них выглядят одинаково, и записи этих законов имеют одинаковую форму в разных ИСО.

Предположение о существовании хотя бы одной ИСО в изотропном пространстве приводит к выводу о существовании бесконечного множества таких систем, движущихся друг относительно друга со всевозможными постоянными скоростями. Если ИСО существуют, то пространство будет однородным и изотропным, а время - однородным; согласно теореме Нётер , однородность пространства относительно сдвигов даст закон сохранения импульса , изотропность приведёт к сохранению момента импульса , а однородность времени - к сохранению энергии движущегося тела.

Если скорости относительного движения ИСО, реализуемых действительными телами, могут принимать любые значения, связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Галилея .

Связь с реальными системами отсчёта

Абсолютно инерциальные системы представляют собой математическую абстракцию, естественно, в природе не существующую. Однако существуют системы отсчёта, в которых относительное ускорение достаточно удалённых друг от друга тел (измеренное по эффекту Доплера) не превышает 10 −10 м/с², например, Международная небесная система координат в сочетании с Барицентрическим динамическим временем дают систему, относительные ускорения в которой не превышают 1,5·10 −10 м/с² (на уровне 1σ) . Точность экспериментов по анализу времени прихода импульсов от пульсаров, а вскоре - и астрометрических измерений, такова, что в ближайшее время должно быть измерено ускорение Солнечной системы при её движении в гравитационном поле Галактики, которое оценивается в м/с² .

С разной степенью точности и в зависимости от области использования инерциальными системами можно считать системы отсчёта, связанные с: Землёй , Солнцем , неподвижные относительно звезд.

Геоцентрическая инерциальная система координат

Применение Земли в качестве ИСО, несмотря на приближённый его характер, широко распространено в навигации . Инерциальная система координат, как часть ИСО строится по следующему алгоритму. В качестве точки O- начала координат выбирается центр земли в соответствии с принятой её моделью. Ось z – совпадает с осью вращения земли. Оси x и y находятся в экваториальной плоскости. Следует заметить, что такая система не участвует во вращении Земли.

Примечания

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Инерциальная система отсчёта" в других словарях:

    Система отсчёта, в к рой справедлив закон инерции: матер. точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчёта,… … Физическая энциклопедия

    ИНЕРЦИАЛЬНАЯ Система ОТСЧЁТА, смотри Система отсчета … Современная энциклопедия

    Инерциальная система отсчёта - ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЁТА, смотри Система отсчета. … Иллюстрированный энциклопедический словарь

    инерциальная система отсчёта - inercinė atskaitos sistema statusas T sritis fizika atitikmenys: angl. Galilean frame of reference; inertial reference system vok. inertiales Bezugssystem, n; Inertialsystem, n; Trägheitssystem, n rus. инерциальная система отсчёта, f pranc.… … Fizikos terminų žodynas

    Система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая… … Большая советская энциклопедия

    Система отсчёта, в к рой справедлив закон инерции, т. е. тело, свободное от воздействий со стороны др. тел, сохраняет неизменной свою скорость (по абс. значению и по направлению). И. с. о. является такая (и только такая) система отсчёта, к рая… … Большой энциклопедический политехнический словарь

    Система отсчёта, в к рой справедлив закон инерции: материальная точка, на к рую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения Любая система отсчёта, движущаяся относительно И. с. о. поступательно … Естествознание. Энциклопедический словарь

    инерциальная система отсчёта - Система отсчёта, по отношению к которой изолированная материальная точка находится в покое или движется прямолинейно и равномерно … Политехнический терминологический толковый словарь

    Система отсчёта, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчёта, движущаяся относительно инерциальной… … Энциклопедический словарь

    Система отсчёта инерциальная - система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система… … Концепции современного естествознания. Словарь основных терминов

Общий курс физики

Введение.

Физика (греч., от physis – природа), наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира (закономерности явлений природы, свойства и строение материи и законы её движения). Понятия физики и её законы лежат в основе всего естествознания. Физика относится к точным наукам и изучает количественные закономерности явлений. Поэтому, естественно, языком физики является математика.

Материя может существовать в двух основных формах: вещество и поле. Они взаимосвязаны между собой.

Примеры: Вещество – твердые тела, жидкости, плазма, молекулы, атомы, элементарные частицы и т.д.

Поле – электромагнитное поле (кванты (порции) поля – фотоны);

гравитационное поле (кванты поля – гравитоны).

Взаимосвязь вещества и поля – аннигиляция электронно-позитронной пары.

Физика безусловно является мировоззренческой наукой, а знание её основ – необходимый элемент любого образования, культуры современного человека.

В тоже время физика имеет огромное прикладное значение. Именно ей обязано абсолютное большинство технических, информационных и коммуникационных достижений человечества.

Более того, последние десятилетия физические методы исследования находят все большее применение в, казалось бы, далеких от физики науках, таких как социология и экономика.

Классическая механика.

Механика – раздел физики, в котором изучается простейшая форма движения материи – перемещение тел в пространстве и времени.

Изначально основные принципы (законы) механики как науки были сформулированы И. Ньютоном в виде трех законов, получивших его имя.

Используя векторный способ описания, скорость можно определить как производную от радиус-вектора точки или тела , а масса выступает здесь в качестве коэффициента пропорциональности.

  1. При взаимодействии двух тел каждое из них действует на другое тело с одинаковой по значению, но противоположной по направлению силой.

Эти законы проистекают из опыта. На них построена вся классическая механика. Долгое время считалось, что все наблюдаемые явления могут быть описаны этими законами. Однако с течением времени расширялись границы человеческих возможностей, и опыт показал, что законы Ньютона справедливы не всегда, а классическая механика, как следствие, имеет определенные границы применимости.

Кроме того, несколько позже мы обратимся к классической механике с несколько другой стороны – исходя из законов сохранения, которые в некотором смысле являются более общими законами физики, чем законы Ньютона.

1.2. Границы применимости классической механики.

Первое ограничение связано со скоростями рассматриваемых объектов. Опыт показал, что законы Ньютона остаются справедливыми только при условии , где скорость света в вакууме (). При этих скоростях линейные масштабы и промежутки времени не изменяются при переходе от одной системы отсчета к другой. Поэтому пространство и время абсолютны в классической механике.

Итак, классическая механика описывает движение с малыми относительными скоростями, т.е. это нерелятивистская физика. Ограничение со стороны больших скоростей – первое ограничение применения классической механики Ньютона.

Кроме того, опыт показывает, что применение законов ньютоновской механики неправомерно к описанию микрообъектов: молекул, атомов, ядер, элементарных частиц и т.д. Начиная с размеров

(), адекватное описание наблюдаемых явлений дают другие


законы – квантовые . Именно их необходимо использовать, когда характерная величина, описывающая систему и имеющая размерность , сравнима по порядку с постоянной Планка Скажем, для электрона, находящегося в атоме, имеем . Тогда величина, имеющая размерность момента импульса, равна: .

Любое физическое явление – это последовательность событий . Событием называется то, что происходит в данной точке пространства в данный момент времени.

Для описания событий вводятся пространство и время – категории, обозначающие основные формы существования материи. Пространство выражает порядок существования отдельных объектов, а время – порядок смены явлений. Пространство и время необходимо разметить. Разметка осуществляется путем введения тел отсчета и реперных (масштабных) тел.

Системы отсчета. Инерциальные системы отсчета.

Для описания движения тела или используемой модели – материальной точки может быть применен векторный способ описания, когда положение интересующего нас объекта задают с помощью радиус-вектора отрезка, направленного от тела отсчета в интересующую нас точку, положение которой в пространстве может изменяться со временем. Геометрическое место концов радиус-вектора называют траекторией движущейся точки.

2.1. Системы координат .

Другим способом описания движения тела является координатный , в котором с телом отсчета жестко связывают определенную систему координат.

В механике, и в физике вообще, в разных задачах удобно пользоваться различными системами координат. Наиболее часто используются, так называемые, декартова, цилиндрическая и сферическая системы координат.

1) Декартова система координат : вводятся три взаимно перпендикулярных оси с заданными масштабами по всем трем осям (линейки). Начало отсчета по всем осям берется от тела отсчета. Пределы изменения каждой из координат от до .

Радиус-вектор, задающий положение точки, определяется через её координаты как

. (2.1)

Малый объем в декартовой системе:

,

или в бесконечно малых приращениях:

(2.2)

2) Цилиндрическая система координат : в качестве переменных выбираются расстояние от оси , угол поворота от оси x и высота вдоль оси от тела отсчета.


3) Сферическая система координат : вводится расстояние от тела отсчета до интересующей точки и углы

поворота и , отсчитываемые от осей и , соответственно.

Радиус-вектор – функция переменных

,

пределы изменения координат:

Декартовы координаты связаны со сферическими следующими соотношениями

(2.6)

Элемент объема в сферических координатах:

(2.7)

2.2. Система отсчета .

Для построения системы отсчета жестко связанную с телом отсчета систему координат необходимо дополнить часами. Часы могут находиться в различных точках пространства, поэтому их нужно синхронизовать. Синхронизация часов производится с помощью сигналов. Пусть время распространения сигнала из точки, где произошло событие, до точки наблюдения равно . Тогда наши часы должны в момент появления сигнала показывать время , если часы в точке события в момент его наступления показывают время . Такие часы будем считать синхронизированными.

Если расстояние от точки пространства, где произошло событие, до точки наблюдения , а скорость передачи сигнала , то . В классической механике принимается, что скорость распространения сигнала . Поэтому вводятся одни часы во всем пространстве.

Совокупность тела отсчета, системы координат и часов образуют Систему отсчета (СО).

Имеется бесконечное множество систем отсчета. Опыт дает, что пока скорости невелики по сравнению со скоростью света , линейные масштабы и промежутки временине изменяются при переходе из одной системы отсчета в другую.

Иначе говоря, в классической механике пространство и время абсолютны .

Если , то масштабы и интервалы времени зависят от выбора СО, т.е. пространство и время становятся понятиями относительными. Это уже область релятивистской механики .

2.3. Инерциальные системы отсчета (ИСО).

Итак, мы стоим перед выбором системы отсчета, в которой могли бы решать задачи механики (описывать движение тел и устанавливать причины, его вызывающие). Выясняется, что далеко не все системы отсчета равноправны не только при формальном описании задачи, но, что гораздо важнее, по-разному представляют причины, вызывающие изменение состояние тела.

Систему отсчета, в которой законы механики формулируются наиболее просто, позволяет установить первый закон Ньютона, который постулирует существование инерциальных систем отсчета – ИСО.

I закон классической механики – закон инерции Галилея-Ньютона .

Существует такая система отсчета, в которой материальная точка, если исключить её взаимодействие со всеми остальными телами, будет двигаться по инерции, т.е. сохранять состояние покоя или равномерного прямолинейного движения.

Это – инерциальная система отсчета (ИСО).

В ИСО изменение движения материальной точки (ускорение) обусловлено только её взаимодействием с другими телами, но не зависит от свойств самой системы отсчета.

На всякое тело могут оказывать воздействия другие тела, его окружающие, в результате чего может измениться состояние движения (покоя) наблюдаемого тела. Вместе с тем такие воздействия могут быть скомпенсированы (уравновешены) и не вызывать таковых изменений. Когда говорят, что действия двух или нескольких тел компенсируют друг друга, то это значит, что результат их совместного действия такой же, как если бы этих тел вовсе не было. Если влияние на тело других тел компенсируется, то относительно Земли тело находится или в покое, или движется прямолинейно и равномерно.

Таким образом, мы приходим к одному из основных законов механики, который называется первым законом Ньютона.

1-й закон Ньютона (закон инерции)

Существуют такие системы отсчёта, в которых поступательно движущееся тело находится в состоянии покоя или равномерного прямолинейного движения (движения по инерции) до тех пор, пока воздействия со стороны других тел не выведут его из этого состояния.

Применительно к сказанному, изменение скорости тела (т.е. ускорение) всегда вызывается воздействием на это тело каких-либо других тел.

1-й закон Ньютона выполняется только в инерциальных система отсчёта.

Определение

Системы отсчёта, относительно которых тело, не испытывающее на себе воздействия других тел, покоится или движется равномерно и прямолинейно, называются инерциальными.

Установить, является ли данная система отсчёта инерциальной, можно лишь опытным путём. В большинстве случаев можно считать инерциальными системы отсчёта, связанные с Землёй или с телами отсчёта, которые по отношению к земной поверхности движутся равномерно и прямолинейно.

Рисунок 1. Инерциальные системы отсчёта

В настоящее время экспериментально подтверждено, что практически инерциальна гелиоцентрическая система отсчета, связанная с центром Солнца и тремя "неподвижными" звездами.

Любая другая система отсчета, движущаяся относительно инерциальной равномерно и прямолинейно, сама является инерциальной.

Галилей установил, что никакими механическими опытами, поставленными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея, или механического принципа относительности.

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. ИСО играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любого закона физики имеет одинаковый вид в каждой ИСО.

Если тело отсчёта движется с ускорением, то связанная с ним система отсчёта является неинерциальной, и в ней 1-й закон Ньютона несправедлив.

Свойство тел сохранять во времени своё состояние (скорость движения, направление движения, состояние покоя и т.п.) называют инертностью. Само явление сохранения скорости движущимся телом при отсутствии внешних воздействий называется инерцией.

Рисунок 2. Проявления инерции в автобусе при начале движения и торможении

С проявлением инертности тел мы часто встречаемся в повседневности. При резком ускорении автобуса пассажиры, находящиеся в нём, наклоняются назад (рис.2,а), а при резком торможении автобуса наклоняются вперёд (рис.2,б), а при повороте автобуса вправо - к левой его стенке. При большом ускорении взлетающего самолёта тело пилота, стремясь сохранить первоначальное состояние покоя, прижимается к сидению.

Инертность тел наглядно проявляется при резкой смене ускорений тел системы, когда инерциальная система отсчёта сменяется неинерциальной, и наоборот.

Инертность тела принято характеризовать его массой (инертной массой).

Сила, действующая на тело со стороны неинерциальной системы отсчета, называется силой инерции

Если на тело в неинерциальной системе отсчета одновременно действуют несколько сил, одни из которых являются "обычными" силами, а другие - инерциальными, то тело будет испытывать одну результирующую силу, являющуюся векторной суммой всех действующих на него сил. Эта результирующая сила не является силой инерции. Сила инерции - это только составляющая результирующей силы.

Если палочку, подвешенную на двух тонких нитях, медленно потянуть за шнур, прикрепленный к ее центру, то:

  1. палочка сломается;
  2. оборвется шнур;
  3. оборвется одна из нитей;
  4. возможен любой вариант, в зависимости от приложенной силы

Рисунок 4

Сила приложена к середине палочки, в месте подвеса шнура. Поскольку, по 1 закону Ньютона, всякое тело обладает инертностью, часть палочки в точке подвеса шнура будет двигаться под действием приложенной силы, а другие части палочки, на которые сила не действует, останутся в покое. Потому сломается палочка в точке подвеса.

Ответ. Правильный ответ 1.

Человек везет двое связанных саней, прикладывая силу под углом 300 к горизонту. Найдите эту силу, если известно, что сани движутся равномерно. Массы саней по 40 кг. Коэффициент трения 0,3.

$т_1$ = $т_2$ = $m$ = 40 кг

${\mathbf \mu }$ = 0,3

${\mathbf \alpha }$=$30^{\circ}$

$g$ = 9.8 м/с2

Рисунок 5

Так как сани движутся с постоянной скоростью, то по первому закону Ньютона сумма сил, действующих на сани, равна нулю. Запишем первый закон Ньютона для каждого тела сразу в проекции на оси, и добавим закон сухого трения Кулона для саней:

Ось ОХ Ось OY

\[\left\{ \begin{array}{c} T-F_{тр1}=0 \\ F_{тр1}=\mu N_1 \\ F_{тр2}=\mu N_2 \\ F{cos \alpha -\ }F_{тр2}-T=0 \end{array} \right. \left\{ \begin{array}{c} N_1-mg=0 \\ N_2+F{sin \alpha \ }-mg=0 \end{array} \right.\]

$F=\frac{2\mu mg}{{cos \alpha \ }+\mu {sin \alpha \ }}=\ \frac{2\cdot 0.3\cdot 40\cdot 9.8}{{cos 30{}^\circ \ }+0.3\cdot {sin 30{}^\circ \ }}=231.5\ H$

С древнейших времен движение материальных тел не переставало волновать умы ученых. Так, например, сам Аристотель считал, что если на тело не действуют никакие силы, то такое тело всегда будет находиться в покое.

И лишь только спустя 2000 лет итальянский ученый Галилео Галилей смог исключить из формулировки Аристотеля слово «всегда». Галилей понял, что пребывание тела в состоянии покоя не является единственным следствием отсутствия внешних сил.

Тогда Галилей заявил: тело, на которое не действуют никакие силы, будет либо находиться в покое, либо двигаться равномерно прямолинейно. То есть, движение с одинаковой скоростью по прямой траектории, с точки зрения физики, равнозначно состоянию покоя.

Что есть состояние покоя?

В жизни этот факт наблюдать очень сложно, поскольку всегда имеет место сила трения, которая не дает предметам и вещам покидать свои места. Но если представить себе бесконечно длинный, абсолютно скользкий и гладкий каток, на котором стоит тело, то станет очевидно, что если придать телу импульс, то тело будет двигаться бесконечно долго и по одной прямой.

И в самом деле, на тело действую только две силы: сила тяжести и сила реакции опоры. Но расположены они на одной прямой и направлены друг против друга. Таким образом, по принципу суперпозиции, мы имеем, что общая сила, действующая на такое тело равна нулю.

Однако это идеальный случай. В жизни сила трения проявляет себя почти во всех случаях. Галилей сделал важное открытие, приравняв состояние покоя и движение с постоянной скоростью по прямой линии. Но этого было недостаточно. Оказалось, что условие это выполняется не во всех случаях.

Ясность в этот вопрос внес Исаак Ньютон, обобщивший исследования Галилея и, таким образом, сформулировавший Первый Закон Ньютона.

Первый закон Ньютона: формулируем сами

Существуют две формулировки первого закона Ньютона современная и формулировка самого Исаака Ньютона. В исходном варианте первый закон Ньютона несколько неточен, а современный вариант в попытках исправить эту неточность оказался очень запутанным и потому неудачным. Ну а так как истина всегда где-то рядом, то попытаемся найти это «рядом» и разобраться, что же представляет собой данный закон.

Современная формулировка звучит следующим образом: «Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго» .

Инерциальные системы отсчета

Инерциальными называют системы отсчета, в которых выполняется закон инерции . Закон же инерции заключается в том, что тела сохраняют свою скорость неизменной, если на них не действуют другие тела. Получается очень неудобоваримо, малопонятно и напоминает комичную ситуацию, когда на вопрос: “Где это «тут»?” отвечают: “Это здесь”, а на следующий логичный вопрос: “А где это «здесь»?” отвечают: “Это тут”. Масло масляное. Замкнутый круг.

Формулировка самого Ньютона такова: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние» .

Однако на практике этот закон выполняется не всегда. Убедиться в этом можно элементарно. Когда человек стоит, не держась за поручни, в движущемся автобусе, и автобус резко тормозит, то человек начинает двигаться вперед относительно автобуса, хотя его не понуждает к этому ни одна видимая сила.

То есть, относительно автобуса первый закон Ньютона в изначальной формулировке не выполняется. Очевидно, что он нуждается в уточнении. Уточнением и является введение инерциальных систем отсчета . То есть, таких систем отсчета, в которых первый закон Ньютона выполняется. Это не совсем понятно, поэтому попробуем перевести все это на человеческий язык.

Инерциальные и неинерциальные системы отсчета

Свойство инерции любого тела таково, что до тех пор, пока тело остается изолированным от других тел, оно будет сохранять свое состояние покоя или равномерного прямолинейного движения . «Изолированным» - это значит никак не связанным, бесконечно удаленным от других тел.

На практике это означает, что если в нашем примере за систему отсчета принять не автобус, а какую-то звезду на окраине Галактики, то первый закон Ньютона будет абсолютно точно выполняться для беспечного пассажира, не держащегося за поручни. При торможении автобуса он будет продолжать свое равномерное движение, пока на него не подействуют другие тела.

Вот такие системы отсчета, которые никак не связаны с рассматриваемым телом, и которые никак не влияют на инертность тела, называются инерциальными. Для таких систем отсчета первый закон Ньютона в его исходной формулировке абсолютно справедлив.

То есть закон можно сформулировать так : в системах отсчета, абсолютно никак не связанных с телом, скорость тела при отсутствии стороннего воздействия остается неизменной. В таком виде первый закон Ньютона легко доступен для понимания.

Проблема заключается в том, что на практике очень сложно рассматривать движение конкретного тела относительно таких систем отсчета. Мы не можем переместиться на бесконечно далекую звезду и оттуда осуществлять какие-либо опыты на Земле.

Поэтому за такую систему отсчета условно часто принимают Землю, хотя она и связана с находящимися на ней телами и влияет на характеристики их движения. Но для многих расчетов такое приближение оказывается достаточным. Поэтому примерами инерциальных систем отсчета можно считать Землю для расположенных на ней тел, Солнечную систему для ее планет и так далее.

Первый закон Ньютона не описывается какой-либо физической формулой, однако с помощью него выводятся другие понятия и определения. По сути, этот закон постулирует инертность тел. И таким образом выходит, что для инерциальных систем отсчета закон инерции и есть первый закон Ньютона.

Еще примеры инерциальных систем и первого закона Ньютона

Так, например, если тележка с шаром будет ехать сначала по ровной поверхности, с постоянной скоростью, а потом заедет на песчаную поверхность, то шар внутри тележки начнет ускоренное движение, хотя никакие силы на него не действуют (на самом деле, действуют, но их сумма равна нулю).

Происходит это от того, что система отсчета (в данном случае, тележка) в момент попадания на песчаную поверхность, становится неинерциальной, то есть перестает двигаться с постоянной скоростью.

Первый Закон Ньютона вносит важное разграничение между инерциальными и неинерциальными системами отсчета. Также важным следствием этого закона является тот факт, что ускорение, в некотором смысле, важнее скорости тела.

Поскольку движение с постоянной скоростью по прямой линии суть нахождение в состоянии покоя. Тогда как движение с ускорением явно свидетельствуют о том, что либо сумма сил, приложенных к телу, не равно нулю, либо сама система отсчета, в которой находится тело, является неинерциальной, то есть движется с ускорением.

Причем ускорение может быть как положительным (тело ускоряется), так и отрицательным (тело замедляется).

Нужна помощь в учебе?

Предыдущая тема: Относительность движения: понятие и примеры
Следующая тема:   Второй закон Ньютона: формула и определение + маленький опыт

Всякая система отсчёта, движущаяся по отношению к инерциальной системе отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета. Следовательно, теоретически может существовать любое число инерциальных систем отсчета.

В реальности система отсчёта всегда связывается с каким-нибудь конкретным телом, по отношению к которому изучается движение различных объектов. Так как все реальные тела движутся с тем или иным ускорением, любая реальная система отсчёта может рассматриваться как инерциальная система отсчета лишь с определенной степенью приближения. С высокой степенью точности инерциальной можно считать гелиоцентрическую систему, связанную с центром масс Солнечной системы и с осями, направленными на три далёкие звезды. Такая инерциальная система отсчета используется главным образом в задачах небесной механики и космонавтики. Для решения большинства технических задач инерциальной можно считать систему отсчета, жёстко связанную с Землёй.

Принцип относительности Галилея

Инерциальные системы отсчета обладают важным свойством, которое описывает принцип относительности Галилея :

  • всякое механическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчета.

Равноправие инерциальных систем отсчета, устанавливаемое принципом относительности, выражается в следующем:

  1. законы механики в инерциальных системах отсчета одинаковы. Это значит, что уравнение, описывающее некоторый закон механики, будучи выражено через координаты и время любой другой инерциальной системы отсчета, будет иметь один и тот же вид;
  2. по результатам механических опытов невозможно установить, покоится ли данная система отсчета или движется равномерно и прямолинейно. В силу этого ни одна из них не может быть выделена как преимущественная система, скорости движения которой мог бы быть придан абсолютный смысл. Физический смысл имеет лишь понятие относительной скорости движения систем, так что любую систему можно признать условно неподвижной, а другую – движущейся относительно нее с определенной скоростью;
  3. уравнения механики неизменны по отношению к преобразованиям координат при переходе от одной инерциальной системы отсчета к другой, т.е. одно и тоже явление можно описать в двух разных системах отсчета внешне по-разному, но физическая природа явления остается при этом неизменной.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Система отсчета жестко связана с лифтом. В каких из приведенных ниже случаев систему отсчета можно считать инерциальной? Лифт: а) свободно падает; б) движется равномерно вверх; в) движется ускоренно вверх; г) движется замедленно вверх; д) движется равномерно вниз.
Ответ а) свободное падение – это движение с ускорением , поэтому систему отсчета, связанную с лифтом в данном случае нельзя считать инерциальной;

б) так как лифт движется равномерно, систему отсчета можно считать инерциальной;