Холодный термоядерный реактор. Холодный термоядерный синтез признали официально

В Университете Осаки состоялся необычный публичный эксперимент. В присутствии 60 гостей, среди которых были журналисты шести японских газет и двух ведущих телеканалов, группа японских физиков под руководством профессора Ёсиаки Араты продемонстрировали реакцию холодного термоядерного синтеза.

Эксперимент был не из простых и мало чем напоминал сенсационную работу физиков Мартина Флейшмана и Стенли Понса 1989 года, в результате которой они с помощью почти обычного электролиза умудрились, по их заявлению, соединить атомы водорода и дейтерия (изотоп водорода с атомным числом 2) в один атом трития. Правду они сказали тогда или ошиблись, теперь уже выяснить невозможно, но многочисленные попытки получить холодный термояд таким же образом в других лабораториях не увенчались успехом, и эксперимент был дезавуирован.

Так началась в чем-то драматическая, а в чем-то и трагикомическая жизнь холодного термояда. С самого начала над ней дамокловым мечом висело одно из самых серьезных обвинений в науке – неповторяемость эксперимента. Это направление называли маргинальной наукой, даже «патологической», но, несмотря ни на что, оно не умирало. Все это время с риском для собственной научной карьеры холодный термояд пытались получить не только «маргиналы» – изобретатели вечных двигателей и прочие восторженные невежды, но и вполне серьезные ученые. Но – неповторяемость! Вот что-то там такое пошло, датчики зафиксировали эффект, но его никому не предъявишь, потому что уже в следующем эксперименте никакого эффекта нет. А даже если и есть, то в другой лаборатории он, в точности повторенный, не воспроизводится.

Скепсис научного сообщества сами колдфьюзионисты (производное от cold fusion – холодный синтез) объясняли, в частности, непониманием. Один из них рассказывал корреспонденту «НГ»: «Каждый ученый хорошо разбирается только в своей узкой области. Он следит за всеми публикациями по теме, знает цену каждому коллеге по направлению, а если он хочет определить свое отношение к тому, что находится за пределами этого направления, то идет к признанному эксперту и, не особо вникая, принимает его мнение за истину в последней инстанции. Ему ведь некогда разбираться в деталях, у него есть собственная работа. А сегодняшние признанные эксперты к холодному термояду относятся отрицательно».

Так это или не так, но факт оставался фактом – холодный термояд проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов. Многие уставали и уходили, на их место приходили немногие – ни денег, ни славы, а взамен – перспектива стать отверженным, получить клеймо «маргинального ученого».

Потом, несколько лет спустя, кажется, поняли, в чем дело – в неустойчивости свойств образца палладия, применяемого в экспериментах. Одни образцы давали эффект, другие категорически отказывались, а те, что давали, в любой момент могли передумать.

Похоже, сейчас, после майского публичного эксперимента в Университете Осаки, период неповторяемости заканчивается. Японцы утверждают, что им удалось с этой напастью справиться.

«Они создали особые структуры, наночастицы, – объяснил корреспонденту «НГ» Андрей Липсон, ведущий научный сотрудник Институт химии и электрохимии РАН, – специально подготовленные кластеры, состоящие из нескольких сотен атомов палладия. Главная особенность этих нанокластеров состоит в том, что они имеют внутри пустоты, в которые можно закачивать атомы дейтерия до очень высокой концентрации. И когда эта концентрация превысит определенный предел, дейтоны сближаются друг с другом настолько, что могут сливаться, и начинается термоядерная реакция. Там совсем другая физика, чем, скажем, в ТОКАМАКах. Термоядерная реакция идет там сразу по нескольким каналам, основной из них – слияние двух дейтонов в атом лития-4 с выделением тепла».

Когда Ёсиака Арата стал добавлять дейтериевый газ к смеси, содержащей упомянутые наночастицы, ее температура поднялась до 70 градусов по Цельсию. После того как газ был отключен, температура в ячейке оставалась повышенной больше 50 часов, причем выделяемая энергия превысила затраченную. По мнению Араты, это можно объяснить только ядерным синтезом.

Конечно, с первой фазой жизни холодного термояда – неповторяемостью – эксперимент Араты далеко не покончил. Для того чтобы его результаты были признаны научным сообществом, необходимо, чтобы он с тем же успехом был повторен сразу в нескольких лабораториях. А поскольку тема очень специфическая, с намеком на маргинальность, похоже, что и этого будет мало. Возможно, что и после этого холодному термояду (если он все-таки существует) долго придется ждать полного признания, как это, например, происходит с историей вокруг так называемого пузырькового термояда, полученного Рузи Талейарханом из Окриджской национальной лаборатории.

«НГ-наука» уже рассказывала об этом скандале. Талейархан утверждал, что получил термояд, пропуская звуковые волны через сосуд с тяжелым ацетоном. При этом в жидкости образовывались и взрывались пузырьки, выделяя энергию, достаточную для осуществления термоядерного синтеза. Поначалу эксперимент независимо повторить не удалось, Талейархана обвинили в фальсификации. Он в ответ напал на оппонентов, обвиняя их в том, что у них плохие приборы. Но в конце концов в феврале прошлого года эксперимент, проведенный независимо в Университете Пердью, подтвердил результаты Талейархана и восстановил репутацию физика. С тех пор – полное молчание. Ни признаний, ни обвинений.

Холодным термоядом эффект Талейархана можно назвать только с очень большой натяжкой. «На самом деле это горячий термояд, – подчеркивает Андрей Липсон. – Там работают энергии в тысячи электронвольт, а в экспериментах с холодным термоядом эти энергии оцениваются долями электронвольта». Но, думается, эта энергетическая разница не очень-то повлияет на отношение научного сообщества, и даже если японский эксперимент будет успешно повторен в других лабораториях, колдфьюзионистам еще очень долго придется ожидать полного признания.

Впрочем, многие из тех, кто занимается холодным термоядом несмотря ни на что, полны оптимизма. Еще в 2003 году Митчелл Шварц, физик из Массачусетского технологического института, заявил на одной из конференций: «Мы занимаемся этими экспериментами так долго, что вопрос стоит уже не в том, можем ли мы получить с помощью холодного термояда дополнительное тепло, а в том, можем ли мы получать его киловаттами».

Действительно, киловаттами пока не получается, и конкуренции мощным термоядерным проектам, в частности многомиллиардному проекту международного реактора ИТЕР, холодный термояд пока даже в перспективе не представляет. По оценкам американцев, их исследователям понадобится от 50 до 100 млн. долл. и 20 лет на проверку жизнеспособности эффекта и возможностей его коммерческого использования.

В России о подобных суммах на такие исследования даже и мечтать не приходится. Да и мечтать-то, похоже, почти некому.

«Здесь никто этим не занимается, – говорит Липсон. – Для этих экспериментов требуется специальная аппаратура, специальное финансирование. Но официальных грантов мы на такие эксперименты не получаем, а если и занимаемся ими, то факультативно, параллельно с основной работой, за которую мы получаем зарплату. Так что в России идет только «повторение задов».

Условием для обычной термоядерной реакции являются очень высокаятемпература и давление.

В прошлом столетии было высказано желание осуществлять холодную термоядерную реакцию при комнатной температуре и обычном атмосферном давлении. Но всё же, несмотря на многочисленные исследования в данной отрасли, в реальности осуществить подобную реакцию до сих пор не получалось. Более того, многие учёные и эксперты саму идею признали ошибочной.

Методику осуществления так называемой реакции холодного термоядерного синтеза удалось разработать американским учёным. Об это говорится в немецком авторитетном журнале Naturwissenschaften, где была опубликована статья, в которой описывается способ осуществления ядерной реакции низкой энергии.

Исследования проводились под руководством Памелы Мосер-Босс и Александра Шпака из Центра космических и морских военных систем в штате Сан-Диего.

В ходе исследовний воздействию магнитных и электрических полей подвергался тонкий провод, покрытый тонким слоем палладия.

Для обнаружения заряжённых частиц, появлявшихся в результате подобного опыта, использовались детекторы из пластиковой плёнки.

В ближайшее время результаты исследований американских специалистов должны быть проверены независимыми экспертами.

July 24th, 2016

23 марта 1989 года Университет Юты сообщил в пресс-релизе, что «двое ученых запустили самоподдерживающуюся реакцию ядерного синтеза при комнатной температуре». Президент университета Чейз Петерсон заявил, что это эпохальное достижение сравнимо лишь с овладением огнем, открытием электричества и окультуриванием растений. Законодатели штата срочно выделили $5 млн на учреждение Национального института холодного синтеза, а университет запросил у Конгресса США еще 25 млн. Так начался один из самых громких научных скандалов XX века. Печать и телевидение мгновенно разнесли новость по миру.

Ученые, сделавшие сенсационное заявление, вроде бы имели солидную репутацию и вполне заслуживали доверия. Переселившийся в США из Великобритании член Королевского общества и экс-президент Международного общества электрохимиков Мартин Флейшман обладал международной известностью, заработанной участием в открытии поверхностно-усиленного рамановского рассеяния света. Соавтор открытия Стэнли Понс возглавлял химический факультет Университета Юты.

Так что же это все таки, миф или реальность?


Источник дешевой энергии

Флейшман и Понс утверждали, что они заставили ядра дейтерия сливаться друг с другом при обычных температурах и давлениях. Их «реактор холодного синтеза» представлял собой калориметр с водным раствором соли, через который пропускали электрический ток. Правда, вода была не простой, а тяжелой, D2O, катод был сделан из палладия, а в состав растворенной соли входили литий и дейтерий. Через раствор месяцами безостановочно пропускали постоянный ток, так что на аноде выделялся кислород, а на катоде — тяжелый водород. Флейшман и Понс якобы обнаружили, что температура электролита периодически возрастала на десятки градусов, а иногда и больше, хотя источник питания давал стабильную мощность. Они объяснили это поступлением внутриядерной энергии, выделяющейся при слиянии ядер дейтерия.

Палладий обладает уникальной способностью к поглощению водорода. Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит. Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков.

Физики вносят ясность

Однако физики-ядерщики и специалисты по физике плазмы не спешили бить в литавры. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы. Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии (около 2,45 МэВ). Их нетрудно обнаружить либо непосредственно (с помощью нейтронных детекторов), либо косвенно (поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации). В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры.

Однако из этого ничего не вышло. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов. Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего! Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты. Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же безрезультатно. Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества (АФО), которая состоялась в Балтиморе 1 мая того же года.


Sic transit gloria mundi

От этого удара Понс и Флейшман уже не оправились. В газете New York Times появилась разгромная статья, а к концу мая научное сообщество пришло к выводу, что претензии химиков из Юты — либо проявление крайней некомпетентности, либо элементарное жульничество.

Но имелись и диссиденты, даже среди научной элиты. Эксцентричный нобелевский лауреат Джулиан Швингер, один из создателей квантовой электродинамики, настолько уверовал в открытие химиков из Солт-Лейк-Сити, что в знак протеста аннулировал свое членство в АФО.

Тем не менее академическая карьера Флейшмана и Понса завершилась — быстро и бесславно. В 1992 году они ушли из Университета Юты и на японские деньги продолжали свои работы во Франции, пока не лишились и этого финансирования. Флейшман возвратился в Англию, где живет на пенсии. Понс отказался от американского гражданства и поселился во Франции.

Пироэлектрический холодный синтез

Холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Так, в 2005 году исследователям из Калифорнийского университета в Лос-Анджелесе удалось запустить подобную реакцию в контейнере с дейтерием, внутри которого было создано электростатическое поле. Его источником служила вольфрамовая игла, подсоединенная к пироэлектрическому кристаллу танталата лития, при охлаждении и последующем нагревании которого создавалась разность потенциалов 100−120 кВ. Поле напряженностью порядка 25 ГВ/м полностью ионизировало атомы дейтерия и так разгоняло его ядра, что при столкновении с мишенью из дейтерида эрбия они давали начало ядрам гелия-3 и нейтронам. Пиковый нейтронный поток составил порядка 900 нейтронов в секунду (в несколько сотен раз выше типичного фонового значения). Хотя такая система имеет перспективы в качестве генератора нейтронов, говорить о ней как об источнике энергии нельзя. Подобные устройства потребляют намного больше энергии, чем генерируют: в экспериментах калифорнийских ученых в одном цикле охлаждения-нагревания длительностью несколько минут выделялось примерно 10-8 Дж (на 11 порядков меньше, чем нужно для нагрева стакана воды на 1°С).

На этом история не заканчивается.

В начале 2011 года в мире науки вновь вспыхнул интерес к холодному термоядерному синтезу, или, как его называют отечественные физики, холодному термояду. Поводом для этого ажиотажа послужила демонстрация итальянскими учеными Серджио Фокарди и Андреа Росси из Университета Болоньи необычной установки, в которой, по словам ее разработчиков, этот синтез осуществляется достаточно легко.

В общих чертах работает этот аппарат так. В металлическую трубку с электрическим подогревателем помещаются нанопорошок никеля и обычный изотоп водорода. Далее нагнетается давление около 80 атмосфер. При первоначальном нагреве до высокой температуры (сотни градусов), как говорят ученые, часть молекул H2 разделяется на атомарный водород, далее тот вступает в ядерную реакцию с никелем.

В результате этой реакции порождается изотоп меди, а также большое количество тепловой энергии. Андреа Росси объяснил, что при первых испытаниях прибора они получали от него около 10-12 киловатт на выходе, в то время как на входе система требовала в среднем 600-700 ватт (имеется в виду электроэнергия, поступающая в прибор при включении его в розетку). По всему получалось, что производство энергии в данном случае было многократно выше затрат, а ведь именно этого эффекта в свое время ждали от холодного термояда.

Тем не менее, по сообщению разработчиков, в данном приборе пока вступает в реакцию далеко не весь водород и никель, а очень малая их доля. Однако ученые уверены, что то, что происходит внутри, представляет собой именно ядерные реакции. Доказательством этого они считают: появление меди в большем количестве, чем могла бы составлять примесь в исходном "топливе" (то есть никеле); отсутствие большого (то есть измеримого) расхода водорода (поскольку он ведь мог бы выступать как топливо в химической реакции); выделяемое тепловое излучение; ну и, конечно, сам энергетический баланс.

Итак, неужели итальянским физикам все-таки удалось добиться термоядерного синтеза при низких температурах (сотни градусов Цельсия — это ничто для подобных реакций, которые обычно идут при миллионах градусах Кельвина!)? Сложно сказать, поскольку до сих пор все рецензируемые научные журналы даже отклонили статьи ее авторов. Скептицизм многих ученых вполне понятен — уже много лет слова "холодный синтез" вызывают у физиков усмешку и ассоциации с вечным двигателем. Кроме того, сами авторы устройства честно признают, что тонкие детали его работы пока остаются вне их понимания.

Что же это за такой неуловимый холодный термояд, доказать возможность протекания которого многие ученые пытаются уже не один десяток лет? Для того чтобы понять сущность данной реакции, а также перспективность подобных исследований, давайте сначала поговорим о том, что такое вообще термоядерный синтез. Под этим термином понимают процесс, при котором происходит синтез более тяжелых атомных ядер из более легких. При этом выделяется огромное количество энергии, куда больше, чем при ядерных реакциях распада радиоактивных элементов.

Подобные процессы постоянно происходят на Солнце и других звездах, из-за чего они могут выделять и свет, и тепло. Так, например, каждую секунду наше Солнце излучает в космическое пространство энергию, эквивалентную четырем миллионам тонн массы. Эта энергия рождается в ходе слияния четырех ядер водорода (проще говоря, протонов) в ядро гелия. При этом на выходе в результате превращения одного грамма протонов выделяется в 20 миллионов раз больше энергии, чем при сгорании грамма каменного угля. Согласитесь, подобное весьма впечатляет.

Но неужели люди не могут создать реактор, подобный Солнцу, для того чтобы производить большое количество энергии для своих нужд? Теоретически, конечно, могут, поскольку прямой запрет на такое устройство не устанавливает ни один из законов физики. Тем не менее, сделать это достаточно сложно, и вот почему: данный синтез требует очень высокой температуры и такого же нереально высокого давления. Поэтому создание классического термоядерного реактора получается экономически невыгодным — на то, чтобы запустить его, нужно будет затратить куда больше энергии, чем он сможет выработать за последующие несколько лет работы.

Возвращаясь к итальянским первооткрывателям приходится признать, что и сами «ученые» не внушают особого доверия, ни своими прошлыми достижениями, ни своим нынешним положением. Имя Серджио Фокарди до сих пор было мало кому известно, но зато благодаря своему ученому званию профессора, можно хотя бы не сомневаться в его причастности к науке. А вот в отношении коллеги по открытию, Андреа Росси, такого уже не скажешь. На данный момент Андреа является сотрудником некой американской корпорации Leonardo Corp, и в свое время отличился лишь привлечением к суду за уклонение от уплаты налогов и контрабанду серебра из Швейцарии. Но и на этом «плохие» новости для сторонников холодного термоядерного синтеза не закончились. Выяснилось, что научный журнал Journal of Nuclear Physics, в котором были опубликованы статьи итальянцев о своем открытие, на самом деле представляет собой скорее блог, а неполноценный журнал. И, вдобавок, его владельцами оказались ни кто иные, как уже знакомые итальянцы Серджио Фокарди и Андреа Росси. А ведь публикация в серьезных научных изданиях служит подтверждением «правдоподобности» открытия.

Не остановившись на достигнутом, и капнув еще глубже, журналисты также выяснили, что идея представленного проекта принадлежит совершенного другому человеку — итальянскому ученому Франческо Пьянтелли. Похоже, именно на этом, бесславно и закончилась очередная сенсация, и мир в очередной раз лишился «вечного двигателя». Но как, не без иронии, утешают себя итальянцы, если это всего лишь выдумка, то, по-крайней мере, она не лишена остроумия, ведь одно дело разыграть знакомых и совсем другое, попытаться обвести вокруг пальца целый мир.

В настоящее время все права на данное устройство принадлежат американской компании Industrial Heat, где Росси возглавляет всю научно-исследовательскую и конструкторскую деятельность в отношении реактора.

Существуют низкотемпературная (E-Cat) и высокотемпературная (Hot Cat) версии реактора. Первая для температур примерно 100-200 °C, вторая для температур порядка 800-1400 °C. В настоящее время компания продала низкотемпературный реактор на 1МВт неназванному заказчику для коммерческого использования и, в частности, на этом реакторе Industrial Heat проводит тестирование и отладку для того, чтобы начать полномасштабное промышленное производство подобных энергетических блоков. Как заявляет Андреа Росси, реактор работает главным образом за счет реакции между никелем и водородом, в ходе которой происходит трансмутация изотопов никеля с выделением большого количества тепла. Т.е. одни изотопы никеля переходят в другие изотопы. Тем не менее был проведен ряд независимых испытаний, наиболее информативным из которых было испытание высокотемпературной версии реактора в швейцарском городе Лугано. Об этом испытании уже писали .

Еще в 2012 году сообщалось, что продана первая установка холодного синтеза Росси.

27 декабря на сайте E-Cat World была опубликована статья о независимом воспроизведении реактора Росси в России . В этой же статье содержится ссылка на доклад «Исследование аналога высокотемпературного теплогенератора Росси» физика Пархомова Александра Георгиевича . Доклад подготовлен для всероссийского физического семинара «Холодный ядерный синтез и шаровая молния», который прошел 25 сентября 2014 года в Российском университете дружбы народов.

В докладе автор представил свою версию реактора Росси, данные по его внутреннему устройству и проведенным испытаниям. Главным вывод: реактор действительно выделяет больше энергии, чем потребляет. Отношение выделенного тепла к потребленной энергии составило 2.58. Более того, около 8 минут реактор проработал вообще без подачи входной мощности, после того, как питающий провод перегорел, производя при этом около киловата тепловой мощности на выходе.

В 2015 году А.Г. Пархомову удалось сделать длительно работающий реактор с замером давления. С 23:30 16 марта температура держится до сих пор. Фото реактора.

Наконец, удалось сделать длительно работающий реактор. Температура 1200оС достигнута в 23:30 16 марта после 12- часового постепенного нагрева и держится до сих пор. Мощность нагревателя 300 Вт, COP=3.
Впервые успешно удалось вмонтировать в установку манометр. При медленном нагреве максимальное давление 5 бар было достигнуто при 200оС, потом давление снижалось и при температуре около 1000оС стало отрицательным. Наиболее сильный вакуум около 0,5 бар был при температуре 1150оС.

При длительной непрерывной работе нет возможности круглосуточно подливать воду. Поэтому пришлось отказаться от использованной в предыдущих экспериментах калориметрии, основанной на измерении массы испарившейся воды. Определение теплового коэффициента в этом эксперименте проводится путем сравнения потребляемой электронагревателем мощности при наличии и отсутствии топливной смеси. Без топлива температура 1200оС достигается при мощности около 1070 Вт. При наличии топлива (630 мг никеля +60 мг алюмогидрида лития) такая температура достигается при мощности около 330 Вт. Таким образом, реактор вырабатывает около 700 Вт избыточной мощности (COP ~ 3,2). (Объяснение А.Г. Пархомова, более точное значение СОР требует более детального расчета)

источники

Холодный термоядерный синтез известен как одна из крупнейших научных мистификаций XX века. Долгое время большинство физиков отказывались обсуждать даже саму возможность подобной реакции. Однако недавно два итальянских ученых представили публике установку, которая, по их словам, легко его осуществляет. Неужели этот синтез все-таки возможен?

В начале нынешнего года в мире науки вновь вспыхнул интерес к холодному термоядерному синтезу, или, как его называют отечественные физики, холодному термояду. Поводом для этого ажиотажа послужила демонстрация итальянскими учеными Серджио Фокарди и Андреа Росси из Университета Болоньи необычной установки, в которой, по словам ее разработчиков, этот синтез осуществляется достаточно легко.

В общих чертах работает этот аппарат так. В металлическую трубку с электрическим подогревателем помещаются нанопорошок никеля и обычный изотоп водорода. Далее нагнетается давление около 80 атмосфер. При первоначальном нагреве до высокой температуры (сотни градусов), как говорят ученые, часть молекул H 2 разделяется на атомарный водород, далее тот вступает в ядерную реакцию с никелем.

В результате этой реакции порождается изотоп меди, а также большое количество тепловой энергии. Андреа Росси объяснил, что при первых испытаниях прибора они получали от него около 10-12 киловатт на выходе, в то время как на входе система требовала в среднем 600-700 ватт (имеется в виду электроэнергия, поступающая в прибор при включении его в розетку). По всему получалось, что производство энергии в данном случае было многократно выше затрат, а ведь именно этого эффекта в свое время ждали от холодного термояда.

Тем не менее, по сообщению разработчиков, в данном приборе пока вступает в реакцию далеко не весь водород и никель, а очень малая их доля. Однако ученые уверены, что то, что происходит внутри, представляет собой именно ядерные реакции. Доказательством этого они считают: появление меди в большем количестве, чем могла бы составлять примесь в исходном "топливе" (то есть никеле); отсутствие большого (то есть измеримого) расхода водорода (поскольку он ведь мог бы выступать как топливо в химической реакции); выделяемое тепловое излучение; ну и, конечно, сам энергетический баланс.

Итак, неужели итальянским физикам все-таки удалось добиться термоядерного синтеза при низких температурах (сотни градусов Цельсия — это ничто для подобных реакций, которые обычно идут при миллионах градусах Кельвина!)? Сложно сказать, поскольку до сих пор все рецензируемые научные журналы даже отклонили статьи ее авторов. Скептицизм многих ученых вполне понятен — уже много лет слова "холодный синтез" вызывают у физиков усмешку и ассоциации с вечным двигателем. Кроме того, сами авторы устройства честно признают, что тонкие детали его работы пока остаются вне их понимания.

Что же это за такой неуловимый холодный термояд, доказать возможность протекания которого многие ученые пытаются уже не один десяток лет? Для того чтобы понять сущность данной реакции, а также перспективность подобных исследований, давайте сначала поговорим о том, что такое вообще термоядерный синтез. Под этим термином понимают процесс, при котором происходит синтез более тяжелых атомных ядер из более легких. При этом выделяется огромное количество энергии, куда больше, чем при ядерных реакциях распада радиоактивных элементов.

Подобные процессы постоянно происходят на Солнце и других звездах, из-за чего они могут выделять и свет, и тепло. Так, например, каждую секунду наше Солнце излучает в космическое пространство энергию, эквивалентную четырем миллионам тонн массы. Эта энергия рождается в ходе слияния четырех ядер водорода (проще говоря, протонов) в ядро гелия. При этом на выходе в результате превращения одного грамма протонов выделяется в 20 миллионов раз больше энергии, чем при сгорании грамма каменного угля. Согласитесь, подобное весьма впечатляет.

Но неужели люди не могут создать реактор, подобный Солнцу, для того чтобы производить большое количество энергии для своих нужд? Теоретически, конечно, могут, поскольку прямой запрет на такое устройство не устанавливает ни один из законов физики. Тем не менее, сделать это достаточно сложно, и вот почему: данный синтез требует очень высокой температуры и такого же нереально высокого давления. Поэтому создание классического термоядерного реактора получается экономически невыгодным — на то, чтобы запустить его, нужно будет затратить куда больше энергии, чем он сможет выработать за последующие несколько лет работы.

Именно поэтому многие ученые на протяжении всего XX века пытались осуществить термоядерную реакцию синтеза при низких температурах и обычном давлении, то есть тот самый холодный термояд. Первое сообщение о том, что это возможно, появилось 23 марта 1989 года, когда профессор Мартин Флейшман и его коллега Стенли Понс провели в своем Университете штата Юта пресс-конференцию, где сообщили о том, как они путем почти обычного пропускания тока через электролит получили положительный энергетический выход в виде тепла и зафиксировали идущее от электролита гамма-излучение. То есть провели реакцию холодного термоядерного синтеза.

В июне того же года ученые послали статью с результатами эксперимента в Nature, однако вскоре вокруг их открытия разгорелся настоящий скандал. Дело в том, что исследователи из ведущих научных центров США, Калифорнийского и Массачусетского технологических институтов, в деталях повторили этот эксперимент и подобного не обнаружили. Правда потом последовали два подтверждения, сделанные учеными из Техасского университета "Эй энд Эм" и Института технологических исследований штата Джорджия. Однако и с ними тоже получился конфуз.

При постановке контрольных экспериментов выяснилось, что электрохимики из Техаса неправильно истолковали результаты опыта — в их эксперименте повышенное выделение тепла было вызвано электролизом воды, поскольку термометр служил в качестве второго электрода (катода)! В Джорджии же нейтронные счетчики оказались настолько чувствительными, что реагировали на тепло поднесенной руки. Именно так и был зарегистрирован "выброс нейтронов", который исследователи сочли результатом реакции термоядерного синтеза.

В результате всего этого многие физики преисполнились уверенностью в том, что никакого холодного термояда нет и не может быть, а Флейшман и Понс просто-напросто смошенничали. Тем не менее, другие (а их, к сожалению, явное меньшинство) не верят в мошенничество ученых и даже в то, что здесь была просто ошибка, и надеются, что чистый и практически неисчерпаемый источник энергии сможет быть сконструирован.

К числу последних относится и японский ученый Йосиаки Арата, который несколько лет исследовал проблему холодного термояда и в 2008 году провел в Университете Осака публичный эксперимент, показавший возможность протекания термоядерного синтеза при невысоких температурах. Он и его коллеги использовали особые структуры, состоящие из наночастиц.

Это были специально подготовленные кластеры, состоящие из нескольких сотен атомов палладия. Главная их особенность состояла в том, что они имели внутри обширные пустоты, в которые можно закачивать атомы дейтерия (изотоп водорода) до очень высокой концентрации. И когда эта концентрация превысила определенный предел, данные частицы сблизились друг с другом настолько, что начали сливаться, в результате чего запустилась настоящая термоядерная реакция. Она заключалась в слиянии двух атомов дейтерия в атом лития-4 с выделением тепла.

Доказательством этого служило то, что когда профессор Арата стал добавлять дейтериевый газ к смеси, содержащей упомянутые наночастицы, ее температура поднялась до 70 градусов по Цельсию. После того как газ был отключен, температура в ячейке оставалась повышенной больше 50 часов, причем выделяемая энергия превысила затраченную. По мнению ученого, это можно было объяснить только тем, что произошел ядерный синтез.

Правда, пока эксперимент Араты также не удалось повторить ни в одной лаборатории. Поэтому многие физики продолжают считать холодный термояд мистификацией и шарлатанством. Однако сам Арата отрицает подобные обвинения, упрекая оппонентов в том, что они не умеют работать с наночастицами, поэтому-то у них ничего и не получается.

Экология потребления.Наука и техника: Холодный ядерный синтез может стать одним из величайших научных прорывов, если когда-нибудь будет осуществлён.

23 марта 1989 года Университет Юты сообщил в пресс-релизе, что «двое ученых запустили самоподдерживающуюся реакцию ядерного синтеза при комнатной температуре». Президент университета Чейз Петерсон заявил, что это эпохальное достижение сравнимо лишь с овладением огнем, открытием электричества и окультуриванием растений. Законодатели штата срочно выделили $5 млн на учреждение Национального института холодного синтеза, а университет запросил у Конгресса США еще 25 млн. Так начался один из самых громких научных скандалов XX века. Печать и телевидение мгновенно разнесли новость по миру.

Ученые, сделавшие сенсационное заявление, вроде бы имели солидную репутацию и вполне заслуживали доверия. Переселившийся в США из Великобритании член Королевского общества и экс-президент Международного общества электрохимиков Мартин Флейшман обладал международной известностью, заработанной участием в открытии поверхностно-усиленного рамановского рассеяния света. Соавтор открытия Стэнли Понс возглавлял химический факультет Университета Юты.

Так что же это все таки, миф или реальность?

Источник дешевой энергии

Флейшман и Понс утверждали, что они заставили ядра дейтерия сливаться друг с другом при обычных температурах и давлениях. Их «реактор холодного синтеза» представлял собой калориметр с водным раствором соли, через который пропускали электрический ток. Правда, вода была не простой, а тяжелой, D2O, катод был сделан из палладия, а в состав растворенной соли входили литий и дейтерий. Через раствор месяцами безостановочно пропускали постоянный ток, так что на аноде выделялся кислород, а на катоде - тяжелый водород. Флейшман и Понс якобы обнаружили, что температура электролита периодически возрастала на десятки градусов, а иногда и больше, хотя источник питания давал стабильную мощность. Они объяснили это поступлением внутриядерной энергии, выделяющейся при слиянии ядер дейтерия.

Палладий обладает уникальной способностью к поглощению водорода. Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит. Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков.

Физики вносят ясность

Однако физики-ядерщики и специалисты по физике плазмы не спешили бить в литавры. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы. Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии (около 2,45 МэВ). Их нетрудно обнаружить либо непосредственно (с помощью нейтронных детекторов), либо косвенно (поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации). В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры.

Однако из этого ничего не вышло. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов. Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего! Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты. Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же безрезультатно. Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества (АФО), которая состоялась в Балтиморе 1 мая того же года.

Sic transit gloria mundi

От этого удара Понс и Флейшман уже не оправились. В газете New York Times появилась разгромная статья, а к концу мая научное сообщество пришло к выводу, что претензии химиков из Юты - либо проявление крайней некомпетентности, либо элементарное жульничество.

Но имелись и диссиденты, даже среди научной элиты. Эксцентричный нобелевский лауреат Джулиан Швингер, один из создателей квантовой электродинамики, настолько уверовал в открытие химиков из Солт-Лейк-Сити, что в знак протеста аннулировал свое членство в АФО.

Тем не менее академическая карьера Флейшмана и Понса завершилась - быстро и бесславно. В 1992 году они ушли из Университета Юты и на японские деньги продолжали свои работы во Франции, пока не лишились и этого финансирования. Флейшман возвратился в Англию, где живет на пенсии. Понс отказался от американского гражданства и поселился во Франции.

Пироэлектрический холодный синтез

Холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Так, в 2005 году исследователям из Калифорнийского университета в Лос-Анджелесе удалось запустить подобную реакцию в контейнере с дейтерием, внутри которого было создано электростатическое поле. Его источником служила вольфрамовая игла, подсоединенная к пироэлектрическому кристаллу танталата лития, при охлаждении и последующем нагревании которого создавалась разность потенциалов 100−120 кВ. Поле напряженностью порядка 25 ГВ/м полностью ионизировало атомы дейтерия и так разгоняло его ядра, что при столкновении с мишенью из дейтерида эрбия они давали начало ядрам гелия-3 и нейтронам. Пиковый нейтронный поток составил порядка 900 нейтронов в секунду (в несколько сотен раз выше типичного фонового значения). Хотя такая система имеет перспективы в качестве генератора нейтронов, говорить о ней как об источнике энергии нельзя. Подобные устройства потребляют намного больше энергии, чем генерируют: в экспериментах калифорнийских ученых в одном цикле охлаждения-нагревания длительностью несколько минут выделялось примерно 10-8 Дж (на 11 порядков меньше, чем нужно для нагрева стакана воды на 1°С).

На этом история не заканчивается

В начале 2011 года в мире науки вновь вспыхнул интерес к холодному термоядерному синтезу, или, как его называют отечественные физики, холодному термояду. Поводом для этого ажиотажа послужила демонстрация итальянскими учеными Серджио Фокарди и Андреа Росси из Университета Болоньи необычной установки, в которой, по словам ее разработчиков, этот синтез осуществляется достаточно легко.

В общих чертах работает этот аппарат так. В металлическую трубку с электрическим подогревателем помещаются нанопорошок никеля и обычный изотоп водорода. Далее нагнетается давление около 80 атмосфер. При первоначальном нагреве до высокой температуры (сотни градусов), как говорят ученые, часть молекул H2 разделяется на атомарный водород, далее тот вступает в ядерную реакцию с никелем.

В результате этой реакции порождается изотоп меди, а также большое количество тепловой энергии. Андреа Росси объяснил, что при первых испытаниях прибора они получали от него около 10-12 киловатт на выходе, в то время как на входе система требовала в среднем 600-700 ватт (имеется в виду электроэнергия, поступающая в прибор при включении его в розетку). По всему получалось, что производство энергии в данном случае было многократно выше затрат, а ведь именно этого эффекта в свое время ждали от холодного термояда.

Тем не менее, по сообщению разработчиков, в данном приборе пока вступает в реакцию далеко не весь водород и никель, а очень малая их доля. Однако ученые уверены, что то, что происходит внутри, представляет собой именно ядерные реакции. Доказательством этого они считают: появление меди в большем количестве, чем могла бы составлять примесь в исходном "топливе" (то есть никеле); отсутствие большого (то есть измеримого) расхода водорода (поскольку он ведь мог бы выступать как топливо в химической реакции); выделяемое тепловое излучение; ну и, конечно, сам энергетический баланс.

Итак, неужели итальянским физикам все-таки удалось добиться термоядерного синтеза при низких температурах (сотни градусов Цельсия - это ничто для подобных реакций, которые обычно идут при миллионах градусах Кельвина!)? Сложно сказать, поскольку до сих пор все рецензируемые научные журналы даже отклонили статьи ее авторов. Скептицизм многих ученых вполне понятен - уже много лет слова "холодный синтез" вызывают у физиков усмешку и ассоциации с вечным двигателем. Кроме того, сами авторы устройства честно признают, что тонкие детали его работы пока остаются вне их понимания.

Что же это за такой неуловимый холодный термояд, доказать возможность протекания которого многие ученые пытаются уже не один десяток лет? Для того чтобы понять сущность данной реакции, а также перспективность подобных исследований, давайте сначала поговорим о том, что такое вообще термоядерный синтез. Под этим термином понимают процесс, при котором происходит синтез более тяжелых атомных ядер из более легких. При этом выделяется огромное количество энергии, куда больше, чем при ядерных реакциях распада радиоактивных элементов.

Подобные процессы постоянно происходят на Солнце и других звездах, из-за чего они могут выделять и свет, и тепло. Так, например, каждую секунду наше Солнце излучает в космическое пространство энергию, эквивалентную четырем миллионам тонн массы. Эта энергия рождается в ходе слияния четырех ядер водорода (проще говоря, протонов) в ядро гелия. При этом на выходе в результате превращения одного грамма протонов выделяется в 20 миллионов раз больше энергии, чем при сгорании грамма каменного угля. Согласитесь, подобное весьма впечатляет.

Но неужели люди не могут создать реактор, подобный Солнцу, для того чтобы производить большое количество энергии для своих нужд? Теоретически, конечно, могут, поскольку прямой запрет на такое устройство не устанавливает ни один из законов физики. Тем не менее, сделать это достаточно сложно, и вот почему: данный синтез требует очень высокой температуры и такого же нереально высокого давления. Поэтому создание классического термоядерного реактора получается экономически невыгодным - на то, чтобы запустить его, нужно будет затратить куда больше энергии, чем он сможет выработать за последующие несколько лет работы.

Возвращаясь к итальянским первооткрывателям приходится признать, что и сами «ученые» не внушают особого доверия, ни своими прошлыми достижениями, ни своим нынешним положением. Имя Серджио Фокарди до сих пор было мало кому известно, но зато благодаря своему ученому званию профессора, можно хотя бы не сомневаться в его причастности к науке. А вот в отношении коллеги по открытию, Андреа Росси, такого уже не скажешь. На данный момент Андреа является сотрудником некой американской корпорации Leonardo Corp, и в свое время отличился лишь привлечением к суду за уклонение от уплаты налогов и контрабанду серебра из Швейцарии. Но и на этом «плохие» новости для сторонников холодного термоядерного синтеза не закончились. Выяснилось, что научный журнал Journal of Nuclear Physics, в котором были опубликованы статьи итальянцев о своем открытие, на самом деле представляет собой скорее блог, а неполноценный журнал. И, вдобавок, его владельцами оказались ни кто иные, как уже знакомые итальянцы Серджио Фокарди и Андреа Росси. А ведь публикация в серьезных научных изданиях служит подтверждением «правдоподобности» открытия.

Не остановившись на достигнутом, и капнув еще глубже, журналисты также выяснили, что идея представленного проекта принадлежит совершенного другому человеку - итальянскому ученому Франческо Пьянтелли. Похоже, именно на этом, бесславно и закончилась очередная сенсация, и мир в очередной раз лишился «вечного двигателя». Но как, не без иронии, утешают себя итальянцы, если это всего лишь выдумка, то, по-крайней мере, она не лишена остроумия, ведь одно дело разыграть знакомых и совсем другое, попытаться обвести вокруг пальца целый мир.

В настоящее время все права на данное устройство принадлежат американской компании Industrial Heat, где Росси возглавляет всю научно-исследовательскую и конструкторскую деятельность в отношении реактора.

Существуют низкотемпературная (E-Cat) и высокотемпературная (Hot Cat) версии реактора. Первая для температур примерно 100-200 °C, вторая для температур порядка 800-1400 °C. В настоящее время компания продала низкотемпературный реактор на 1МВт неназванному заказчику для коммерческого использования и, в частности, на этом реакторе Industrial Heat проводит тестирование и отладку для того, чтобы начать полномасштабное промышленное производство подобных энергетических блоков. Как заявляет Андреа Росси, реактор работает главным образом за счет реакции между никелем и водородом, в ходе которой происходит трансмутация изотопов никеля с выделением большого количества тепла. Т.е. одни изотопы никеля переходят в другие изотопы. Тем не менее был проведен ряд независимых испытаний, наиболее информативным из которых было испытание высокотемпературной версии реактора в швейцарском городе Лугано. Об этом испытании уже писали .

Еще в 2012 году сообщалось, что продана первая установка холодного синтеза Росси.

27 декабря на сайте E-Cat World была опубликована статья о независимом воспроизведении реактора Росси в России. В этой же статье содержится ссылка на доклад «Исследование аналога высокотемпературного теплогенератора Росси» физика Пархомова Александра Георгиевича. Доклад подготовлен для всероссийского физического семинара «Холодный ядерный синтез и шаровая молния», который прошел 25 сентября 2014 года в Российском университете дружбы народов.

В докладе автор представил свою версию реактора Росси, данные по его внутреннему устройству и проведенным испытаниям. Главным вывод: реактор действительно выделяет больше энергии, чем потребляет. Отношение выделенного тепла к потребленной энергии составило 2.58. Более того, около 8 минут реактор проработал вообще без подачи входной мощности, после того, как питающий провод перегорел, производя при этом около киловата тепловой мощности на выходе.

В 2015 году А.Г. Пархомову удалось сделать длительно работающий реактор с замером давления. С 23:30 16 марта температура держится до сих пор. Фото реактора.

Наконец, удалось сделать длительно работающий реактор. Температура 1200оС достигнута в 23:30 16 марта после 12- часового постепенного нагрева и держится до сих пор. Мощность нагревателя 300 Вт, COP=3.
Впервые успешно удалось вмонтировать в установку манометр. При медленном нагреве максимальное давление 5 бар было достигнуто при 200оС, потом давление снижалось и при температуре около 1000оС стало отрицательным. Наиболее сильный вакуум около 0,5 бар был при температуре 1150оС.

При длительной непрерывной работе нет возможности круглосуточно подливать воду. Поэтому пришлось отказаться от использованной в предыдущих экспериментах калориметрии, основанной на измерении массы испарившейся воды. Определение теплового коэффициента в этом эксперименте проводится путем сравнения потребляемой электронагревателем мощности при наличии и отсутствии топливной смеси. Без топлива температура 1200оС достигается при мощности около 1070 Вт. При наличии топлива (630 мг никеля +60 мг алюмогидрида лития) такая температура достигается при мощности около 330 Вт. Таким образом, реактор вырабатывает около 700 Вт избыточной мощности (COP ~ 3,2). (Объяснение А.Г. Пархомова, более точное значение СОР требует более детального расчета). опубликовано

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека..

Ининский сад камней расположен в Баргузинской долине. Огромные камни как будто кто-то специально разбросал или расставил с умыслом. А в местах, где расставлены мегалиты, всегда происходит что-то таинственное.

Одной из достопримечательностей Бурятии является Ининский сад камней в Баргузинской долине. Он производит удивительное впечатление – огромные камни, разбросанные в беспорядке на совершенно ровной поверхности. Как будто кто-то специально то ли разбросал их, то ли расставил с умыслом. А в местах, где расставлены мегалиты, всегда происходит что-то таинственное.

Сила природы

Вообще «сад камней» - это японское название искусственного ландшафта, в котором ключевую роль играют камни, расставленные по строгим правилам. «Карэсансуй» (сухой пейзаж) в Японии культивируется с 14-го века, и появился он не просто так. Считалось, что в местах с большим скоплением камней обитают боги, вследствие этого и самим камням стали придавать божественное значение. Конечно, сейчас японцы используют сады камней как место для медитации, где удобно предаваться философским размышлениям.

А философия здесь вот при чём. Хаотичное, на первый взгляд, расположение камней, на самом деле строго подчинено определённым законам. Во-первых, должна соблюдаться асимметрия и разность размеров камней. В саду есть определённые точки наблюдения – в зависимости от времени, когда вы собираетесь созерцать устройство своего микромира. И главная хитрость – с любой точки наблюдения всегда должен быть один камень, который… не виден.

Самый известный в Японии сад камней находится в Киото – древнейшей столице страны самураев, в храме Рёандзи. Это пристанище буддийских монахов. А у нас в Бурятии «сад камней» появился без усилий человека – его автором является сама Природа.

В юго-западной части Баргузинской долины, в 15 километрах от посёлка Суво, где река Ина выходит из Икатского хребта, расположено это место площадью более 10 квадратных километров. Значительно больше, чем любой японский сад камней – в той же пропорции, как японский бонсаи меньше бурятского кедра. Здесь из ровной земли выступают крупные глыбы камня, достигающего 4-5 метров в поперечнике, а в глубину эти валуны уходят до 10 метров!

Удаление этих мегалитов от горного хребта достигает 5 километров и более. Какая же сила могла разметать эти огромные камни на такие расстояния? То, что это сделал не человек, стало ясно из недавней истории: для гидромелиоративных целей здесь был прорыт 3-километровый канал. И в русле канала там и сям лежат огромные глыбы, уходящие на глубину до 10 метров. С ними бились, конечно, но безуспешно. В результате все работы на канале были остановлены.

Учёные выдвигали разные версии происхождения Ининского сада камней. Многие считают эти глыбы мореными валунами, то есть ледниковыми отложениями. Возраст учёными называется разный (Э. И. Муравский считает, что им 40-50 тысяч лет, а В. В. Ламакин - более 100 тысяч лет!), в зависимости от какого оледенения отсчитывать.

По предположениям геологов, в древности Баргузинская котловина представляла собой пресноводное неглубокое озеро, которое было отделено от Байкала неширокой и невысокой горной перемычкой, соединяющей Баргузинский и Икатский хребты. При повышении уровня воды образовался сток, превратившийся в русло реки, которая все глубже и глубже врезалась в твёрдые кристаллические породы. Известно, как ливневые потоки воды весной или после сильного дождя размывают крутые склоны, оставляя глубокие борозды балок и оврагов. Со временем уровень воды упал, и площадь озера из-за обилия взвешенного материала, приносимого в него реками, уменьшилась. В результате озеро исчезло, а на его месте осталась широкая долина с валунами, которые отнесли позже к памятникам природы.

А вот недавно доктор геолого-минералогических наук Г.Ф. Уфимцев предложил очень оригинальную идею, никак не связанную с оледенениями. По его мнению, Ининский сад камней образовался в результате сравнительно недавнего, имевшего катастрофический характер гигантского выброса крупно-глыбового материала.

По его наблюдениям, ледниковая деятельность на Икатском хребте проявилась только лишь на небольшой площади в верховьях рек Турокчи и Богунды, в средней же части этих рек следов оледенения не наблюдается. Таким образом, по мнению ученого, произошёл прорыв плотины подпрудного озера в течении реки Ины и её притоков. В результате прорыва с верховья Ины селем или грунтовой лавиной в Баргузинскую долину был выброшен большой объем глыбового материала. В пользу этой версии говорит факт сильного разрушения коренных бортов долины реки Ины на месте слияния с Турокчей, что может свидетельствовать о снесении селем большого объема горных пород.

На этом же участке реки Ины Уфимцевым отмечены два крупных «амфитеатра» (напоминают огромную воронку) размерами 2,0 на 1,3 километра и 1,2 на 0,8 километра, которые, вероятно, могли быть ложем крупных подпрудных озер. Прорыв плотины и спуск воды, по мнению Уфимцева, мог произойти в результате проявлений сейсмических процессов, поскольку оба склоновых «амфитеатра» приурочены к зоне молодого разлома с выходами термальных вод.

Здесь шалили боги

Удивительное место издавна интересовало местных жителей. И для «сада камней» люди придумали легенду, уходящую корнями в седую древность. Начало нехитрое. Поспорили как-то две реки, Ина и Баргузин, кто из них первым (первой) добежит до Байкала. Баргузин схитрил и отправился в дорогу тем же вечером, а утром рассерженная Ина помчалась следом, в гневе отбрасывая огромные валуны со своего пути. Так и лежат они до сих пор по обоим берегам реки. Не правда ли, это просто поэтическое описание мощного селя, предложенного для объяснения доктором Уфимцевым?

Камни всё ещё хранят тайну своего образования. Они ведь не только разного размера и цвета, они вообще из разных пород. То есть выломаны были не из одного места. А глубина залегания говорит о многих тысячах лет, за которые вокруг валунов наросли метры грунта.

Тем, кто видел фильм «Аватар», туманным утром камни Ины напомнят висячие горы, вокруг которых летают крылатые драконы. Вершины гор выступают из облаков тумана, как отдельные крепости или головы великанов в шлемах. Впечатления от созерцания сада камней удивительные, и люди не случайно наделили камни магической силой: считается, если прикоснуться к валунам руками, они будут забирать отрицательную энергию, взамен одаряя положительной.

В этих удивительных местах есть ещё одно место, где шалили боги. Это место прозвали «Сувинским саксонским замком». Это природное образование находится недалеко от группы солёных Алгинских озёр возле села Суво, на степных склонах сопки у подножья Икатского хребта. Живописные скалы очень напоминают развалины древнего замка. Эти места служили для эвенкийских шаманов особо почитаемым и священным местом. На эвенкийском языке «сувойя», или «суво» означает «вихрь».

Считалось, что именно здесь обитают духи - хозяева местных ветров. Главным и самым известным из которых был легендарный ветер Байкала «Баргузин». По легенде, в этих местах жил злой правитель. Он отличался свирепым нравом, ему доставало удовольствие приносить несчастья бедным и неимущим людям.

У него был единственный и любимый сын, которого заколдовали духи в наказание жестокому отцу. После осознания своего жестокого и несправедливого отношения к людям правитель пал на колени, стал умолять и слёзно просить вернуть здоровье сыну и сделать его счастливым. А все свои богатства он раздал людям.

И духи освободили из власти недуга сына правителя! Считается, что по этой причине скалы разделены на несколько частей. Среди бурят есть поверье, что в скалах живут хозяева Суво - Тумуржи-Нойон и его жена Тутужиг-Хатан. В честь сувинских владык были установлены бурханы. В особые дни в этих местах проводят целые ритуалы.