Что используют для изображения магнитного поля. Картины магнитных полей

Мы не можем увидеть магнитное поле, однако для лучшего понимания магнитных явлений важно научиться его изображать. В этом помогут магнитные стрелки. Каждая такая стрелка — это маленький постоянный магнит, который легко поворачивается в горизонтальной плоскости (рис. 2.1). О том, как графически изображают магнитное поле и какая физическая величина его характеризует, вы узнаете из этого параграфа.

Рис. 2.2. В магнитном поле магнитные стрелки ориентируются определенным образом: северный полюс стрелки указывает направление вектора индукции магнитного поля в данной точке

Изучаем силовую характеристику магнитного поля

Если заряженная частица движется в магнитном поле, то поле будет действовать на частицу с некоторой силой. Значение этой силы зависит от заряда частицы, направления и значения скорости ее движения, а также от того, насколько сильным является поле.

Силовой характеристикой магнитного поля является магнитная индукция.

Магнитная индукция (индукция магнитного поля) — это векторная физическая величина, характеризующая силовое действие магнитного поля.

Магнитную индукцию обозначают символом B.

Единица магнитной индукции в СИ — тесла; названа в честь сербского физика Николы Теслы (1856-1943):

За направление вектора магнитной индукции в данной точке магнитного поля принято направление, на которое указывает северный полюс магнитной стрелки, установленной в этой точке (рис. 2.2).

Обратите внимание! Направление силы, с которой магнитное поле действует на движущиеся заряженные частицы или на проводник с током, или на магнитную стрелку, не совпадает с направлением вектора магнитной индукции.

Магнитные линии:

Рис. 2.3. Линии магнитного поля полосового магнита

Вне магнита выходят из северного полюса магнита и входят в южный;

Всегда замкнуты (магнитное поле — это вихревое поле);

Наиболее густо расположены у полюсов магнита;

Никогда не пересекаются

Изображаем магнитное поле

На рис. 2.2 видим, как ориентируются магнитные стрелки в магнитном поле: их оси как будто образуют линии, а вектор магнитной индукции в каждой точке направлен вдоль касательной к линии, проходящей через эту точку.

С помощью магнитных линий графически изображают магнитные поля:

1) за направление линии магнитной индукции в данной точке принято направление вектора магнитной индукции;

Рис. 2.4. Цепочки железных опилок воспроизводят картину линий магнитной индукции магнитного поля подковообразного магнита

2) чем больше модуль магнитной индукции, тем ближе друг к другу чертят магнитные линии.

Рассмотрев графическое изображение магнитного поля полосового магнита, можно сделать некоторые выводы (см. на рис. 2.3).

Заметим, что данные выводы справедливы для магнитных линий любого магнита.

Какое направление имеют магнитные линии внутри полосового магнита?


Картину магнитных линий можно воспроизвести с помощью железных опилок.

Возьмем подковообразный магнит, положим на него пластинку из оргстекла и через ситечко будем насыпать на пластинку железные опилки. В магнитном поле каждый кусочек железа намагнитится и превратится в маленькую «магнитную стрелку». Импровизированные «стрелки» сориентируются вдоль магнитных линий магнитного поля магнита (рис. 2.4).

Изобразите картину магнитных линий магнитного поля подковообразного магнита.

Узнаём об однородном магнитном поле

Магнитное поле в некоторой части пространства называют однородным, если в каждой его точке векторы магнитной индукции одинаковы как по модулю, так и по направлению (рис. 2.5).

На участках, где магнитное поле однородно, линии магнитной индукции параллельны и расположены на одинаковом расстоянии друг от друга (рис. 2.5, 2.6). Магнитные линии однородного магнитного поля, направленные к нам, принято изображать точками (рис. 2.7, а) — мы как будто видим «острия стрел», летящих к нам. Если магнитные линии направлены от нас, то их изображают крестиками — мы как будто видим «оперения стрел», летящих от нас (рис. 2.7, б).

В большинстве случаев мы имеем дело с неоднородным магнитным полем, — полем, в разных точках которого векторы магнитной индукции имеют разные значения и направления. Магнитные линии такого поля искривлены, а их плотность разная.

Рис. 2.6. Магнитное поле внутри полосового магнита (а) и между двумя магнитами, обращенными друг к другу разноименными полюсами (б), можно считать однородным

Изучаем магнитное поле Земли

Для изучения земного магнетизма Вильям Гильберт изготовил постоянный магнит в виде шара (модель Земли). Расположив на шаре компас, он заметил, что стрелка компаса ведет себя так же, как на поверхности Земли.

Эксперименты позволили ученому предположить, что Земля — это огромный магнит, а на севере нашей планеты расположен ее южный магнитный полюс. Дальнейшие исследования подтвердили гипотезу В. Гильберта.

На рис. 2.8 изображена картина линий магнитной индукции магнитного поля Земли.

рис. 2.7. Изображение линий магнитной индукции однородного магнитного поля, которые перпендикулярны плоскости рисунка и направлены к нам (а); направлены от нас (б)

Представьте, что вы идете к Северному полюсу, двигаясь точно в том направлении, на которое указывает стрелка компаса. Достигнете ли вы места назначения?

Линии магнитной индукции магнитного поля Земли не параллельны ее поверхности. Если закрепить магнитную стрелку в карданном подвесе, то есть так, чтобы она могла свободно вращаться как вокруг горизонтальной, так

Рис. 2.8. Схема расположения магнитных линий магнитного поля планеты Земля

и вокруг вертикальной осей, стрелка установится под углом к поверхности Земли (рис. 2.9).

Как будет расположена магнитная стрелка в устройстве на рис. 2.9 вблизи северного магнитного полюса Земли? вблизи южного магнитного полюса Земли?

Магнитное поле Земли издавна помогало ориентироваться путешественникам, морякам, военным и не только им. Доказано, что рыбы, морские млекопитающие и птицы во время своих миграций ориентируются по магнитному полю Земли. Так же ориентируются, ища путь домой, и некоторые животные, например кошки.

Узнаём о магнитных бурях

Исследования показали, что в любой местности магнитное поле Земли периодически, каждые сутки, изменяется. Кроме того, наблюдаются небольшие ежегодные изменения магнитного поля Земли. Случаются, однако, и резкие его изменения. Сильные возмущения магнитного поля Земли, которые охватывают всю планету и продолжаются от одного до нескольких дней, называют магнитными бурями. Здоровые люди их практически не ощущают, а вот у тех, кто имеет сердечно-сосудистые заболевания и заболевания нервной системы, магнитные бури вызывают ухудшение самочувствия.

Магнитное поле Земли — своеобразный «щит», который защищает нашу планету от летящих из космоса, в основном от Солнца («солнечный ветер»), заряженных частиц. Вблизи магнитных полюсов потоки частиц подлетают довольно близко к атмосфере Земли. При возрастании солнечной активности космические частицы попадают в верхние слои атмосферы и ионизируют молекулы газа — на Земле наблюдаются полярные сияния (рис. 2.10).

Подводим итоги

Магнитная индукция В — это векторная физическая величина, характеризующая силовое действие магнитного поля. Направление вектора магнитной индукции совпадает с направлением, на которое указывает северный полюс магнитной стрелки. Единица магнитной индукции в СИ — тесла (Тл).

Условные направленные линии, в каждой точке которых касательная совпадает с линией, вдоль которой направлен вектор магнитной индукции, называют линиями магнитной индукции или магнитными линиями.

Линии магнитной индукции всегда замкнуты, вне магнита они выходят из северного полюса магнита и входят в южный, гуще расположены в тех областях магнитного поля, где модуль магнитной индукции больше.

Планета Земля имеет магнитное поле. Вблизи северного географического полюса Земли расположен ее южный магнитный полюс, вблизи южного географического полюса — северный магнитный полюс.

Контрольные вопросы

1. Дайте определение магнитной индукции. 2. Как направлен вектор магнитной индукции? 3. Какова единица магнитной индукции в СИ? В честь кого она названа? 4. Приведите определение линий магнитной индукции. 5. Какое направление принято за направление магнитных линий? 6. От чего зависит густота магнитных линий? 7. Какое магнитное поле называют однородным? 8. Докажите, что Земля имеет магнитное поле. 9. Как расположены магнитные полюсы Земли относительно географических? 10. Что такое магнитные бури? Как они влияют на человека?


Упражнение № 2

1. На рис. 1 изображены линии магнитной индукции на некотором участке магнитного поля. Для каждого случая а-в определите: 1) какое это поле — однородное или неоднородное; 2) направление вектора магнитной индукции в точках А и В поля; 3) в какой точке — А или В — магнитная индукция поля больше.

2. Почему стальная оконная решетка может со временем намагнититься?

3. На рис. 2 изображены линии магнитного поля, созданного двумя одинаковыми постоянными магнитами, обращенными друг к другу одноименными полюсами.

1) Существует ли магнитное поле в точке А?

2) Каково направление вектора магнитной индукции в точке В? в точке С?

3) В какой точке — А, В или С — магнитная индукция поля наибольшая?

4) Каково направление векторов магнитной индукции внутри магнитов?

4. Раньше во время экспедиций на Северный полюс возникали трудности в определении направления движения, ведь вблизи полюса обычные компасы почти не работали. Как вы думаете, почему?

5. Воспользуйтесь дополнительными источниками информации и выясните, какое значение имеет магнитное поле для жизни на нашей планете. Что произошло бы, если бы магнитное поле Земли вдруг исчезло?

6. Существуют участки земной поверхности, где магнитная индукция магнитного поля Земли значительно больше, чем в соседних областях. Воспользуйтесь дополнительными источниками информации и узнайте о магнитных аномалиях подробнее.

7. Объясните, почему любое незаряженное тело всегда притягивается к телу, имеющему электрический заряд.

Это материал учебника

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Темы кодификатора ЕГЭ : взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей . Изолированных магнитных полюсов (так называемых магнитных монополей - аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля .А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий -так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии - это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии .

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии .

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства .

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс - красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году - в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и - северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи .

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта (или правило буравчика , или правило штопора - это уж кому что ближе;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки - вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля , или магнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции . Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки . Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта . Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями - по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом .

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец - к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля - параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке - тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь - главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита - полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него .

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой - это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке - почти через сто лет после гениальной догадки Ампера.

Проведем в магнитном поле ряд непрерывных линий так, чтобы эти линии всюду совпадали с направлением силы поля (с направлением магнитной индукции). Полученная картина может служить изображением магнитного поля.

Если перемещать вдоль линии магнитного поля маленькую, свободно подвешенную компасную стрелку, то ее ось всюду будет совпадать с близлежащим участком линии. На одной из линий рис. 2.13 изображены компасные стрелки в четырех положениях.

Рис. 2.13. Магнитное поле стержневого магнита

Рис. 2.14. Магиитное поле прямолинейного проводника с током. Сопоставьте с рис. 2.10

На рис. 2.13, 2.14 посредством линий изображены магнитные поля постоянного магнита и прямолинейного проводника с током. Стрелки на линиях показывают направление магнитного поля (то направление, которое указывал бы северный конец компасной стрелки).

Для того чтобы по рисунку можно было судить и о силе поля, условились проводить линии тем ближе одна к другой, чем сильнее поле.

Из рис. 2.13 видно, что самое сильное поле - непосредственно около полюсов магнита. Из рис. 2.14 видно, что поле тока сильнее всего около провода, а по мере удаления от него поле ослабевает.

В § 2.1 говорилось, что небольшие железные тела под влиянием магнита сами становятся магнитами (рис. 2.1, а).

Поэтому понятно, что если положить на доску постоянный магнит и посыпать доску железными опилками, то они расположатся так, как расположились бы маленькие компасные стрелки. Картины, получаемые посредством опилок, дают наглядное представление о поле.

На рис. 2.15 изображено магнитное поле катушки. Если свернуть провод спиралью, намотав его как катушку, то одинаково направленные поля отдельных витков сложатся друг с другом, усиливая поле внутри катушки.

Направление магнитной линии совпадает с осью катушки, и поле достигает там наибольшей величины. Поле внутри катушки приблизительно однородно, т. е. сила поля остается приблизительно одинаковой в различных точках. Одинаковыми будут и расстояния между соседними магнитными линиями, имеющими наибольшую плотность внутри катушки.

Рис. 2.15. Картина магнитного поля катушки

«Определение магнитного поля» - По данным, полученным в ходе экспериментов, заполним таблицу. Ж. Верн. Когда мы подносим к магнитной стрелке магнит, она поворачивается. Графическое изображение магнитных полей. Ханс Кристиан Эрстед. Электрическое поле. Магнит имеет два полюса: северный и южный. Этап обобщения и систематизации знаний.

«Магнитное поле и его графическое изображение» - Неоднородное магнитное поле. Катушки с током. Магнитные линии. Гипотеза Ампера. Внутри полосового магнита. Разноименные магнитные полюса. Полярное сияние. Магнитное поле постоянного магнита. Магнитное поле. Земное магнитное поле. Магнитные полюсы. Биометрология. Концентрические окружности. Однородное магнитное поле.

«Энергия магнитного поля» - Скалярная величина. Расчёт индуктивности. Постоянные магнитные поля. Время релаксации. Определение индуктивности. Энергия катушки. Экстратоки в цепи с индуктивностью. Переходные процессы. Плотность энергии. Электродинамика. Колебательный контур. Импульсное магнитное поле. Самоиндукция. Плотность энергии магнитного поля.

«Характеристики магнитного поля» - Линии магнитной индукции. Правило Буравчика. Поворачиваются вдоль силовых линий. Компьютерная модель магнитного поля Земли. Магнитная постоянная. Магнитная индукция. Число носителей заряда. Три способа задать вектор магнитной индукции. Магнитное поле электрического тока. Ученый-физик Уильям Гильберт.

«Свойства магнитного поля» - Вид вещества. Магнитная индукция магнитного поля. Магнитная индукция. Постоянный магнит. Некоторые значения магнитной индукции. Магнитная стрелка. Громкоговоритель. Модуль вектора магнитной индукции. Линии магнитной индукции всегда замкнуты. Взаимодействие токов. Вращающий момент. Магнитные свойства вещества.

«Движение частиц в магнитном поле» - Спектрограф. Проявление действия силы Лоренца. Сила Лоренца. Циклотрон. Определение величины силы Лоренца. Контрольные вопросы. Направления силы Лоренца. Межзвёздное вещество. Задача эксперимента. Изменение параметров. Магнитное поле. Масс-спектрограф. Движение частиц в магнитном поле. Электронно-лучевая трубка.

Всего в теме 20 презентаций