Квадратичная функция, её график и свойства. Квадратичная функция и ее график

Квадратичной функцией называется функция вида:
y=a*(x^2)+b*x+c,
где а - коэффициент при старшей степени неизвестной х,
b - коэффициент при неизвестной х,
а с - свободный член.
Графиком квадратичной функции является кривая, называемая параболой. Общий вид параболы представлен на рисунке ниже.

Рис.1 Общий вид параболы.

Есть несколько различных способов построения графика квадратичной функции. Мы рассмотрим основной и самый общий из них.

Алгоритм построения графика квадратичной функции y=a*(x^2)+b*x+c

1. Построить систему координат, отметить единичный отрезок и подписать координатные оси.

2. Определить направление ветвей параболы (вверх или вниз).
Для этого надо посмотреть на знак коэффициента a. Если плюс - то ветви направлены вверх, если минус - то ветви направлены вниз.

3. Определить координату х вершины параболы.
Для этого нужно использовать формулу Хвершины = -b/2*a.

4. Определить координату у вершины параболы.
Для этого подставить в уравнение Увершины = a*(x^2)+b*x+c вместо х, найденное в предыдущем шаге значение Хвершины.

5. Нанести полученную точку на график и провести через неё ось симметрии, параллельно координатной оси Оу.

6. Найти точки пересечения графика с осью Ох.
Для этого требуется решить квадратное уравнение a*(x^2)+b*x+c = 0 одним из известных способов. Если в уравнение не имеет вещественных корней, то график функции не пересекает ось Ох.

7. Найти координаты точки пересечения графика с осью Оу.
Для этого подставляем в уравнение значение х=0 и вычисляем значение у. Отмечаем эту и симметричную ей точку на графике.

8. Находим координаты произвольной точки А(х,у)
Для этого выбираем произвольное значение координаты х, и подставляем его в наше уравнение. Получаем значение у в этой точке. Нанести точку на график. А также отметить на графике точку, симметричную точке А(х,у).

9. Соединить полученные точки на графике плавной линией и продолжить график за крайние точки, до конца координатной оси. Подписать график либо на выноске, либо, если позволяет место, вдоль самого графика.

Пример построения графика

В качестве примера, построим график квадратичной функции заданной уравнением y=x^2+4*x-1
1. Рисуем координатные оси, подписываем их и отмечаем единичный отрезок.
2. Значения коэффициентов а=1, b=4, c= -1. Так как а=1, что больше нуля ветви параболы направлены вверх.
3. Определяем координату Х вершины параболы Хвершины = -b/2*a = -4/2*1 = -2.
4. Определяем координату У вершины параболы
Увершины = a*(x^2)+b*x+c = 1*((-2)^2) + 4*(-2) - 1 = -5.
5. Отмечаем вершину и проводим ось симметрии.
6. Находим точки пересечения графика квадратичной функции с осью Ох. Решаем квадратное уравнение x^2+4*x-1=0.
х1=-2-√3 х2 = -2+√3. Отмечаем полученные значения на графике.
7. Находим точки пересечения графика с осью Оу.
х=0; у=-1
8. Выбираем произвольную точку B. Пусть она имеет координату х=1.
Тогда у=(1)^2 + 4*(1)-1= 4.
9. Соединяем полученные точки и подписываем график.

Данный урок по алгебре проводится как повторительно-обощающий при подготовке к ГИА в 9 классе. Это урок комплексного применения знаний. На уроке должны быть сформированы основные понятия о квадратичной функции, ее свойства, график. Учащиеся должны знать определение квадратичной функции, уметь выполнять построение графика квадратичной функции, его преобразование и применять данные знания при решении кваратных неравенств

Скачать:


Предварительный просмотр:

МОУ « СОШ №3 г.Ершова Саратовской области»

9 класс.

Тема: «Квадратичная функция, её график и свойства»

Девиз урока: «Трудное сделать легким, легкое привычным, привычное приятным»

Учитель: Е.И.Кормилина

2010 – 2011 учебный год.

Квадратичная функция, её свойства и график.

Тип урока: Урок комплексного применения знаний.

Цели урока:

  1. Выявить степень сформированности у учащихся понятия квадратичной функции, её свойств для решения неравенств, особенностей её графика.
  2. Создать условия для формирования умения анализировать, сравнивать, классифицировать графики квадратичных функций.
  3. Продолжить развитие культуры построения графика квадратичной функции.
  4. Воспитывать чувство товарищества, деликатности и дисциплинированности.

Логика урока:

  1. Актуализация знаний
  2. Повторение
  3. Показ образца применения комплекса знаний
  4. Самостоятельное применение знаний
  5. Контроль, самоконтроль
  6. Коррекция

Структура урока:

  1. Организационный
  2. Актуализация
  3. Применение знаний, умений и навыков

4. Контроль, самоконтроль

5. Коррекция

6. Информация о домашнем задании

7. Подведение итогов

8. Рефлексия


Подписи к слайдам:

Квадратичная функция, ее график и свойства Наш девиз: «Трудное сделать легким, легкое привычным, привычное приятным!»

y x 0 График функции y = a x , 2 при a=1 при a= -1 1 2 3 4 5 6 Х -3 -2 -1 0 1 2 3 y - 9 - 4 - 1 0 - 1 - 4 - 9 -6 -5-4-3-2-1 1 4 9 -9 -4

Преобразование графика квадратичной функции

Построение графиков функций у=х 2 и у=х 2 + m.

0 m Х У m 1 1 у=х 2 + m, m>0

0 Х У m 1 1 m у=х 2 + m, m

Построение графиков функций у=х 2 и у=(х+ l) 2 .

0 l l Х У 1 1 у= (х + l) 2 , l >0

0 l l Х У 1 1 у= (х + l) 2 , l

Постройте в одной координатной плоскости графики функций:

Найти координаты вершины параболы: У=2(х-4)² +5 У=-6(х-1)² У = -х²+12 У= х²+4 У= (х+7)² - 9 У=6 х² (4;5) (1;0) (0;12) (0;4) (-7;-9) (0;0)

График квадратичной функции, его свойства

Квадратичной функцией называется функция, которую можно задать формулой вида y=ax² + bx+c , где х - независимая переменная, a, b и с -некоторые числа (причём а≠0). Например: у = 5х ² +6х+3, у = -7х ² +8х-2, у = 0,8х ² +5, у = ¾ х ² -8х, у = -12х ² квадратичные функции

Графиком квадратичной функции является парабола, ветви которой направлены вверх (если а >0) или вниз (если а 0). у= -7 х ² -х+3 – графиком является парабола, ветви которой направлены вниз (т.к. а=-7, а

Определить координату вершины параболы по формулам: Отметить эту точку на координатной плоскости. Через вершину параболы начертить ось симметрии параболы Найти нули функции и 0тметить их на числовой прямой Найти координаты двух дополнительных точек и симметричных им Провести кривую параболы. Алгоритм решения

Постройте график функции у=2х ² +4х-6, опишите его свойства

Х У 1 1 -2 2 3 -1 1. D(y) = R 2. у=0, если х= 1; -3 3. у > 0, если х 4. у ↓ , если х у , если х 5. у наим = -8 , если х= -1 у наиб – не существует. 6. Е (y): Проверь себя: у

Решение квадратного неравенства с помощью графика квадратичной функции

Определение: Неравенство, левая часть которого есть многочлен второй степени, а правая- нуль, называется неравенством второй степени. Все квадратные неравенства могут быть приведены к одному из следующих видов: 1) ах 2 + bx + c >0; 2) ах 2 + bx + c

Какие из неравенств вы бы назвали неравенствами второй степени: 1) 6х 2 -13х>0; 2) x 2 -3 x -14>0; 3) (5+ x)(x -4)>7; 4) ; 5) 6) 8 x 2 >0; 7) (x -5) 2 -25>0;

Какие из чисел являются решениями неравенства? 1 -3 0 -1 5 -4 -2 0,5 ? ? ? ? ? ? ? ?

Назовите число корней уравнения a x 2 + b x+ c =0 и знак коэффициента а, если график соответствующей квадратичной функции расположен следующим образом: е а б в г д

Назовите промежутки знакопостоянства функции, если её график расположен указанным образом: Ι вариант. Ι І вариант. в б а а в б

Назовите промежутки знакопостоянства функции, если её график расположен указанным образом: Ι вариант f(x)>0 при x Є R f(x) 0 при x Є (-∞ ;1) U (2,5;+∞); f(x)

Назовите промежутки знакопостоянства функции, если её график расположен указанным образом: Ι вариант f(x)>0 при x Є (-∞ ;-3) U (-3;+∞) f(x) 0 при x Є (-∞ ;0,5) U (0,5;+∞) f(x)

Назовите промежутки знакопостоянства функции, если её график расположен указанным образом Ι вариант f(x)>0 при x Є (-∞ ;-4) U (3;+∞); f(x) 0 __________ ; f(x)

Алгоритм решения неравенств второй степени с одной переменной 5х 2 +9х-2 0 (a x 2 + b x+ c 0 (y

Алгоритм решения неравенств второй степени с одной переменной 5х 2 +9х-2 0 (a x 2 + b x+ c 0 (y 0 (y

В таблице 1 найдите верное решение неравенства 1 , в таблице 2 - решение неравенства 2: 1 . 2 . Таблица 1 а в с d а в с d Таблица 2

В таблице 1 найдите верное решение неравенства 1 , в таблице 2- решение неравенства 2: 1 . 2 . Таблица 1 а в с d а в с d Таблица 2

В таблице 1 найдите верное решение неравенства 1 , в таблице 2- решение неравенства 2: 1 . 2 . Таблица 1 а в с d а в с d Таблица 2

Итог урока При решении данных заданий нам удалось систематизировать знания о применении квадратичной функции. Математика- это содержательное, увлекательное и доступное поле деятельности, дающее ученику богатую пищу для ума. Свойства квадратичной функции лежат в основе решения квадратных неравенств. Многие физические зависимости выражаются квадратичной функцией; например, камень, брошенный вверх со скоростью v 0, находится в момент времени t на расстоянии s (t)=- q \2 t 2+ v 0 t от земной поверхности (здесь q - ускорение силы тяжести); количество тепла Q , выделяемое при прохождении тока в проводнике с сопротивлением R , выражается через силу тока I формулой Q = RI 2. Знания свойств квадратичной функции позволяют рассчитать дальность полета тела, брошенного вертикально вверх или под некоторым углом. Этим пользуются в оборонной промышленности.

Незаконченное предложение Задание: закончить одно из трех предложений, которое больше других соответствует вашему состоянию. “ Выполнять задания и решать задачи мне трудно, так как …” “ Выполнять задания и решать задачи мне легко, так как …” “ Выполнять задания и решать задачи для меня занятие приятное и интересное, потому что…”

Домашнее задание Учебник №142; №190


Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.