Какая часть коры больших. Зоны и доли коры больших полушарий

Человека - это поверхностный слой, который покрывает полушарие головного мозга и преимущественно образован вертикально нервными, ориентированными клетками (так называемыми нейронами), а также их отростками и эфферентными (центробежными), афферентными пучками (центростремительными) и нервными волокнами.

Кроме этого в основу состава коры помимо этого, входят клетки, а также нейро-глии.

Очень значительной особенностью структуры является горизонтальная плотная слоистость, которая прежде всего обусловлена всем упорядоченным расположением каждого тела нервных клеток и волокон. Выделяют 6 основных слоев, которые в основном отличаются по собственной ширине, общей плотности его месторасположения, размерам и форме всех составляющих внешних нейронов.

Преимущественно, именно из-за вертикальной своей ориентации отростков, этих пучков всех различных нервных волокон, также как и тел нейронов, которые имеют вертикальную исчерченность. А для полноценной функциональной организации коры головного мозга человека и большое значение здесь имеет колонкообразное, вертикальное местоположение абсолютно всех внутренних нервных клеток на поверхности зоны коры головного мозга.

Основным видом всех основных нервных клеток, которые входят в состав головной коры мозга считаются специальные пирамидные клетки. Тело данных клеток напоминает обычный конус, с высоты которого начинает отходить один длинный и толстый, апикальный дендрит. С основания тела данной пирамидной клетки также отходят аксон и менее длинные базальные дендриты, направляющийся в полноценное белое вещество, которое расположено непосредственно под корой головного мозга, либо ветвящийся в области коры.

Все дендриты клеток пирамиды, на себе несут достаточно большое количество шипиков, выростов, которые принимают максимально активное участие в полноценной формировании синаптических контактов при окончании афферентных волокон, которые приходят в кору головного мозга из других подкорковых образований и отделов коры. Аксоны этих клеток способны образовывать эфферентные основные пути, которые идут непосредственно из К.Г.М. Размеры всех пирамидных клеток могут варьироваться от 5 и до 150 мк (150-это гигантские клетки имени Беца). Кроме пирамидных нейронов К.Г.М. в состав входят некоторые веретенообразные и звездчатые типы интернейронов, которые участвуют в приеме поступаемых афферентных сигналов, а также формировании межнейронных функциональных связей.

Особенности коры головного мозга

Исходя из различных данных филогенеза, кора головного мозга подразделяется на древнюю (палеокортекс), старую (архикор-текс) и новую (неокортекс). В филогенезе К.Г.М. происходит относительное повсеместное увеличение территории новой поверхности коры при незначительным уменьшением площади старой и древней.

Функционально, зоны коры головного мозга делят на 3 вида: ассоциативные, моторные и сенсорные. Кроме этого, кора головного мозга также отвечает за соответствующие области.

За что отвечает кора головного мозга

Кроме этого, важно отметить, что вся кора головного мозга помимо всего вышесказанного отвечает за все . В составе зон коры головного мозга - это разнообразные по своему строению нейроны, среди которых звездчатые, малые и большие пирамидные, корзинчатые, веретенообразные и другие. В функциональном соотношении все основные нейроны подразделяются на следующие виды:

  1. Вставочные нейроны (веретенообразные, малые пирамидные и прочие). Вставочные нейроны имеют и подразделы и могут быть как тормозными, так и возбуждающими (малые и большие корзинчатые нейроны, нейроны, имеющие кистеобразные нейроны и канделяброобразные аксоны)
  2. Афферентные (это так называемые звездчатые клетки) - к которым поступают импульсы со всех специфических путей, а также возникают разнообразные специфические ощущения. Именно эти клетки передают импульсы непосредственно к эфферентным и вставочным нейронам. Группы полисенсорных нейронов соответственно получают различные импульсы от зрительных бугров ассоциативных ядер
  3. Эфферентные нейроны (их называют большими пирамидными клетками) - импульсы от этих клеток идут на так называемую периферию, где обеспечивают определенный род деятельности

Нейроны, а также отростки на поверхности коры головного мозга также расположены шестью слоями. Нейроны, которые выполняют одни и те же рефлекторные функции, расположены строго один выше другого. Таким образом, основной структурной единицей поверхности коры головного мозга считаются отдельные колонки. И наиболее выраженной связь между третьим, четвертым и пятым этапом слоев К.Г.М.

Колодки коры головного мозга

Доказательством наличия колонок в коре головного мозга также можно считать следующие факторы:
При введении разнообразных микроэлектродов в К.Г.М. строго перпендикулярно записывается (регистрируется) импульс при полноценной воздействии аналогичной рефлекторной реакции. И при введении электродов в строго горизонтальном направлении то регистрируются характерные импульсы для разнообразных рефлекторных реакций. В основном, диаметр одной колонки составляет 500 мкм. Все соседние колонки плотно связаны во всем функциональном отношении, а также часто расположены друг с другом в тесных реципрокных взаимоотношениях (одни - тормозят, другие - возбуждают).

При действии раздражителей на ответную реакцию также вовлекаются множество колонок и происходит совершенный синтез и анализ раздражений - это принцип экранирования.

Поскольку кора головного мозга растет в периферии, тогда все поверхностные слои коры головного мозга имеют полное отношение и ко всем сигнальным системам. Эти поверхностные слои состоят с очень большого количества нервных клеток (порядка 15 млрд) и вместе с их отростками, с помощью которых и создается возможность таких неограниченных замыкательных функций, широких ассоциаций - это составляет сущность всей деятельности сигнальной второй системы. Но при всем этом, вторая с.с. функционирует с другими системами.

Внимание!

Кора мозга – пласт серого вещества на поверхности больших полушарий, толщиной 2-5 мм, образующий много­численные борозды, извилины значительно увеличивающие ее площадь. Кора образована телами нейронов и глиальных клеток, расположенных послойно («экранный» тип организа­ции). Под ней лежит белое вещество, представленное нерв­ными волокнами.

Кора представляет собой наиболее молодой филогене­тически и наиболее сложный по морфофункциональной ор­ганизации отдел мозга. Это место высшего анализа и синтеза всей информации поступающей в мозг. Здесь происходит ин­теграция всех сложных форм поведения. Кора мозга отвечает за сознание, мышление, память, «эвристическую деятель­ность» (способность к обобщениям, открытиям). В коре со­держится более 10 млрд. нейронов и 100 млрд. глиальных клеток.

Нейроны коры по количеству отростков только муль­типолярные, а по их месту в рефлекторных дугах и выпол­няемым функциям все они вставочные, ассоциативные. По функции и строению в коре выделяют более 60 типов нейро­нов. По форме различают две их основных группы: пирамид­ные и непирамидные. Пирамидные нейроны являются ос­новным типом нейронов коры. Размеры их перикарионов от 10 до 140 мкм, на срезе они имеют пирамидную форму. От их верхнего угла вверх отходит длинный (апикальный) денд­рит, который Т-образно делится в молекулярном слое. От боковых поверхностей тела нейрона отходят боковые денд­риты. На дендритах и теле нейрона имеются многочисленные синапсы других нейронов. От основания клетки отходит ак­сон, который либо идёт в другие участки коры, либо к дру­гим отделам головного и спинного мозга. Среди нейронов коры мозга различают ассоциативные – связывающие уча­стки коры внутри одного полушария, комиссуральные – их аксоны идут в другое полушарие, и проекционные – их ак­соны идут в нижележащие отделы мозга.

Среди непирамидных нейронов наиболее часто встреча­ются звёздчатые и веретеновидные клетки. Звёздчатые ней­роны - это мелкие клетки с короткими сильно ветвящимися дендритами и аксонами, образующими внутрикорковые связи. Одни из них оказывают тормозное, а другие - возбуж­дающее влияние на пирамидные нейроны. Веретеновидные нейроны имеют длинный аксон, который может идти в вер­тикальном, или горизонтальном направлении. Кора по­строена по экранному типу, то есть нейроны, сходные по структуре и функции расположены слоями (рис. 9-7). Таких слоёв в коре шесть:

1. Молекулярный слой – самый наружный. В нём на­ходится сплетение нервных волокон, расположенных парал­лельно поверхности коры. Основную массу этих волокон со­ставляют ветвления апикальных дендритов пирамидных ней­ронов нижележащих слоёв коры. Сюда же приходят аффе­рентные волокна от зрительных бугров, регулирующих воз­будимость корковых нейронов. Нейроны в молекулярном слое в основном мелкие, веретеновидные.

2. Наружный зернистый слой. Состоит из большого числа звёздчатых клеток. Их дендриты идут в молекулярный слой и образуют синапсы с таламо-кортикальными аффе­рентными нервными волокнами. Боковые дендриты связыва­ются с соседними нейронами этого же слоя. Аксоны обра­зуют ассоциативные волокна, которые идут через белое ве­щество в соседние участки коры и там образуют синапсы.

3. Наружный слой пирамидных нейронов (пирамид­ный слой). Он образован пирамидными нейронами средней вели­чины. Так же, как у ней­ронов второго слоя, их денд­риты идут в молекулярный слой, а аксоны – в белое ве­щество.

4. Внутренний зернистый слой. Он содержит много звёздчатых нейронов. Это ассоциативные, афферентные ней­роны. Они образуют многочисленные связи с другими ней­ронами коры. Здесь расположен ещё один слой горизонталь­ных волокон.

5. Внутренний слой пирамидных нейронов (ганглио­нарный слой). Он образован крупными пирамидными нейро­нами. Последние особенно велики в моторной коре (прецен­тральной извилине), где имеют размеры до 140 мкм и назы­ваются клетками Беца. Их апикальные дендриты поднима­ются в молекулярный слой, боковые дендриты образуют связи с соседними клетками Беца, а аксоны – проекционные эфферентные волокна, идущие в продолговатый и спинной мозг.

6. Слой веретеновидных нейронов (слой полиморфных клеток) состоит в основном из веретеновидных нейронов. Их дендриты идут в молекулярный слой, а аксоны – к зритель­ным буграм.

Шестислойный тип строения коры характерен для всей коры, однако в разных её участках выраженность слоёв, а также форма и расположение нейронов, нервных волокон значительно различаются. По этим признакам К. Бродман выделил в коре 50 цитоархитектонических полей . Эти поля также различаются по функции и обмену веществ.

Специфическую организацию нейронов называют цито­архитектоникой. Так, в сенсорных зонах коры пирамидный и ганглиозный слои выражены слабо, а зернистые слои - хо­рошо. Такой тип коры называется гранулярным. В мотор­ных зонах, напротив, зернистые слои развиты плохо, а пира­мидные хорошо. Это агранулярный тип коры.

Кроме того, существует понятие миелоархитектоника . Это определённая организация нервных волокон. Так, в коре мозга различают вертикальные и три горизонтальных пучка миелиновых нервных волокон. Среди нервных волокон коры мозга различают ассоциативные – связывающие участки коры одного полушария, комиссуральные – соединяющие кору разных полушарий и проекционные волокна – связы­вающие кору с ядрами ствола мозга.

Рис. 9-7. Кора больших полуша-рий головного моз-га чело­века.

А, Б. Расположение кле­ток (цитоархитектоника).

В. Расположе­ние миелино­вых волокон (миелоархитектоника).

Кора головного мозга присутствует в строении организма многих существ, но у человека она достигла своего совершенства. Ученые утверждают, что это стало возможным благодаря вековой трудовой деятельности, которая сопровождает нас постоянно. В отличие от зверей, птиц или рыб, человек постоянно развивает свои возможности и это улучшает его мозговую деятельность, в том числе и функции коры мозга.

Но, давайте подойдем к этому постепенно, вначале рассмотрев строение коры, что, несомненно, очень увлекательно.

Внутреннее устройство коры головного мозга

Кора головного мозга насчитывает более 15 миллиардов нервных клеток и волокон. Каждая из них имеет разную форму, и образуют несколько уникальных слоев, отвечающих за определенные функции. К примеру, функциональность клеток второго и третьего слоя заключается в трансформации возбуждения и правильное перенаправление в определенные отделы головного мозга. А, например, центробежные импульсы представляют собой работоспособность пятого слоя. Рассмотрим каждый слой более тщательно.

Нумерация слоев головного мозга начинается от поверхности и идет глубже:

  1. Молекулярный слой имеет принципиальное отличие своим низких уровнем клеток. Их очень ограниченное количество, состоящее из нервных волокон тесно взаимосвязаны с друг другом.
  2. Зернистый слой иначе называется наружный. Это обусловлено наличием внутреннего слоя.
  3. Пирамидный уровень назван в честь своего строения, потому что имеет пирамидную структуру нейронов, различных по величине.
  4. Зернистый слой №2 получил название внутренний.
  5. Пирамидальный уровень №2 аналогичен третьему уровню. Его состав – это нейроны пирамидного образа имеющий средний и большой размер. Они проникают до молекулярного уровня, поскольку в нем содержаться апикальные дендриты.
  6. Шестой слой, это фузиформные клетки, имеющие второе название «веретеновидные», которые планомерно переходят в белое вещество головного мозга.

Если рассматривать эти уровни более углубленно, то получается, что кора головного мозга принимает на себя проекции каждых уровней возбуждения, которые протекают в разных отделах ЦНС и называются «нижележащие». Они, в свою очередь, транспортируются до мозга по нервным путям человеческого организма.

Презентация: "Локализация высших психических функций в коре головного мозга"

Таким образом, кора головного мозга - орган высшей нервной деятельности человека, и регулирует абсолютно все нервные процессы, происходящие в организме.

И это происходит благодаря особенностям ее строения, а она разделена на три зоны: ассоциативную, моторную и сенсорную.

Современное представление о строении коры головного мозга

Стоит отметить, что существует и несколько отличное представление о ее строении. Согласно нему, существует три зоны, которые отличает друг от друга не только строение, но и ее функциональным предназначением.

  • Первичная зона (моторная), в которой находятся ее специализированные и высокодифференцированные нервные клетки, получают импульсы от слуховые, зрительных и других рецепторов. Это очень важная зона, поражение которой может привести к серьезным расстройствам двигательной и чувствительной функции.
  • Вторичная (сенсорная) зона отвечает за функции обработки информации. К тому же, ее строение состоит из периферических отделов ядер анализаторов, которые устанавливают корректные связи между раздражителями. Ее поражение грозит человеку серьезным расстройством восприятия.
  • Ассоциативная, или третичная зона, ее строение позволяет, возбуждаться от импульсов, идущих от рецепторов кожи, слуха и др. Она формирует условные рефлексы человека, помогая познавать окружающую действительность.

Презентация: "Кора головного мозга"

Основные функции

Чем же отличается кора головного мозга человека и животного? Тем, что ее предназначение обобщать все отделы и контролировать работы. Данные функции обеспечивают миллиарды нейронов, имеющих разнообразное строение. К ним относятся такие виды, как вставочные, афферентные и эфферентные. Поэтому актуально будет рассмотреть каждые из этих видов более подробно.

Вставочный вид нейронов имеют на первый взгляд взаимоисключающие функции, а именно – тормоз и возбуждение.

Афферентный вид нейронов несет ответственность за импульсы, а точнее за их передачу. Эфферентные, в свою очередь, обеспечивают конкретную область деятельности человека и относят к периферии.

Безусловно, это медицинская терминология и стоит отвлечься от нее, конкретизировав функциональность коры головного мозга человека на простом народном языке. Итак, кора головного мозга отвечает за следующие функции:

  • Способность корректно устанавливать связь между внутренними органами и тканями. И даже более того, делает ее идеальной. Такая возможность базируется на условных и безусловных рефлексах человеческого тела.
  • Организация взаимоотношений человеческого организма и окружающей среды. Помимо этого, она контролирует функциональность органов, корректирует их работу и несет ответственность за обмен веществ в человеческом организме.
  • На 100% отвечает за то, чтобы процессы мышления были корректны.
  • И заключительная, но не менее важная функция – высочайший уровень нервной деятельности.

Ознакомившись с данными функциями, мы приходим к понимаю, что , позволило каждому человеку и всему роду в целом, научится осуществлять контроль за теми процессами, которые происходят в организме.

Презентация: "Структурно-функциональная характеристика сенсорной коры"

Академик Павлов в своих множественных исследованиях не единожды указывал, что именно кора является и распорядителем, и распределителем деятельности человека и животных.

Но, стоит также отметить, что кора головного мозга обладает неоднозначными функциями. Главным образом, это проявляется в работе центральной извилины и лобных долей, которые отвечают за сокращение мышц на совершенно противоположной этому раздражению стороне.

К тому же, разные ее части отвечают за разные функции. Например, затылочные доли за зрительные, а височные – за слуховые функции:

  • Если быть более конкретным, то затылочная доля коры фактически является проекцией сетчатой оболочки глаза, которая отвечает за ее зрительные функции. Если в ней происходит какое-либо нарушений, человек может лишиться , ориентации в незнакомой обстановки и даже к полной, необратимой слепоте.
  • Височная доля – это область слуховой рецепции, которая получает импульсы от улитки внутреннего уха, то есть, отвечает за ее слуховые функции. Повреждения этой части коры грозят человеку полной или частичной глухотой, которая сопровождается полным непониманием слов.
  • Нижняя доля центральной извилины отвечает за мозговые анализаторы или, другими словами, вкусовую рецепцию. Она получает импульсы от слизистой полости рта и ее поражение угрожает потерей всех вкусовых ощущений.
  • И наконец, передняя часть коры головного мозга, в которой расположена грушевидная доля отвечает за обонятельную рецепцию, то есть – функции носа. Импульсы в нее поступают от слизистой оболочки носа, если она будет поражена, то человек потеряет обоняние.

Не стоит лишний раз напоминать, что человек находится на высшей ступени развития.

Это подтверждает строение особенно развитой лобной области, которая в ответе за трудовую деятельность и речь. Также она важна в процессе формирования поведенческих реакций человека и его приспособительных функций.

Существует множество исследований, в том числе работы известного академика Павлова, который работал с собаками, изучая строение и работу коры головного мозга. Все они доказывают преимущества человека над животными, именно благодаря особенному ее строению.

Правда, не стоит забывать, что все части находятся в тесном контакте друг с другом и зависят от работы каждой из его составляющих, так что, совершенство человека, залог работы головного мозга в целом.

Из данной статьи читатель уже понял, что головной мозг человека является сложным и до сих пор малоизучен. Тем не менее, он идеальное устройство. Кстати, мало кто знает, что мощность обработки процессов в мозге настолько высока, что рядом с ней бессилен самый мощный в мире компьютер.

Вот еще несколько интересных фактов, которые опубликовали ученные после ряда испытаний и исследований:

  • 2017 года ознаменовался проведением эксперимента, в ходе которого гипер-мощный ПК попытался имитировать лишь 1 секунду активности головного мозга. Тест занял порядка 40 минут. Результат эксперимента – компьютер не справился с заданием.
  • Объем памяти человеческого мозга вмещает n-число bt, которое выражается 8432 нулями. Приблизительно это 1 000 Тb. Если на примере, то в национальном Британском архиве хранится историческая информация за последние 9 веков и объем ее всего лишь 70 Тb. Ощутите насколько весомая разница между этими цифрами.
  • Человеческий мозг заключает в себе 100 тысяч километров сосудов, 100 миллиардов нейронов (цифра равная числу звезд во всей нашей галактике). Помимо этого в мозгу находятся сто триллионов нейронных связей, которые отвечают за формирование воспоминаний. Таким образом, когда вы познаете что-то новое, структура головного мозга изменяется.
  • Во время пробуждения головной мозг аккумулирует электрополе мощность в 23 Вт – этого достаточно зажечь лампу Ильича.
  • По весу мозг состоит из 2% от общей массы, однако задействует он примерно 16% энергии в теле и более 17% кислорода, содержащегося в крови.
  • Ещё один интересный факт, что головной мозг состоит из воды на 75%, а по структуре чем-то сход с сыром «Тофу». А 60% мозга – жир. Ввиду этого для корректной деятельности мозга необходимо здоровое и правильное питание. Употребляйте каждый день в пищу рыбу, оливковое масло, семечки или орехи – и Ваш мозг будет работать долго и ясно.
  • Некоторые ученые, проведя ряд исследований, заметили, что при диете мозг начинает «кушать» сам себя. А низкий уровень кислорода в течение пяти минут способен привести к необратимым последствиям.
  • Удивительно, но человеческое существо не способно щекотать самого себя, т.к. мозг настраивается на внешние раздражители и чтобы не пропустить эти сигналы, немного игнорируется действия самого человека.
  • Забывчивость является естественным процессом. То есть, ликвидация ненужных данных позволяет ЦНС быть гибкой. А влияние алкогольных напитков на память объясняется тем, что спирт затормаживает процессы.
  • Реакция мозга на спиртосодержащие напитки составляет шесть минут.

Активизация интеллекта позволяет производить дополнительную мозговую ткань, которая компенсирует те, что заболели. Ввиду этого рекомендуется заниматься развитием, что в дальнейшем избавит Вас от слабого ума и различных расстройств психики.

Занимайтесь новыми занятиями – это лучше всего способствует развитию мозга. К примеру, общение с людьми, превосходящими Вас в той или иной интеллектуальной области является сильным средством по развитию Вашего интеллекта.

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.


Мозговая кора входит в состав большинства существ на земле, однако именно у человека данная область достигла наибольшего развития. Специалисты утверждают, что это способствовало вековая трудовая деятельность, которая сопровождает нас на протяжении всей жизни.

В этой статье мы рассмотрим строение, а также за что отвечает кора мозга.

Корковая часть головного мозга играет главную функционирующую роль для человеческого организма в целом и состоит из нейронов, их отростков и глиальных клеток. В состав коры входят звездчатые, пирамидные и веретенообразные нервные клетки. Вследствие наличия складов, корковая область занимает достаточно большую поверхность.

В строение коры головного мозга включается послойная классификация, которая подразделяется на следующие слои:

  • Молекулярный. Имеет отличительные отличия, которое отражается в низком клеточном уровне. Низкий показатель количества этих клеток, состоящих из волокон, тесно взаимосвязаны между собой
  • Наружный зернистый. Клеточные субстанции этого слоя направляются в молекулярный слой
  • Слой пирамидальных нейронов. Является наиболее широким слоем. Достиг наибольшей развитости в прецентральной извилине. Количество пирамидных клеток увеличивается в пределах 20-30 мкм от наружной зоны данного слоя к внутреннему
  • Внутренний зернистый. Непосредственно зрительная кора головного мозга является тем участком, где внутренний зернистый слой достиг максимального своего развития
  • Внутренний пирамидный. В его состав входят пирамидные клетки, имеющие крупный размер. Эти клетки переносятся до молекулярного слоя
  • Слой мультиморфных клеток. Данный слой сформирован нервными клетками различного характера, но в большей степени веретенообразного типа. Внешняя зона характеризуется наличием более крупных клеток. Клетки внутреннего отдела характеризуются незначительным размером

Если рассматривать послойный уровень более тщательно, то можно увидеть, что кора большого мозга больших полушарий принимает на себя проекции каждого из уровней, протекающих в различных отделах ЦНС.

Зоны коры больших полушарий

Особенности клеточного строения корковой части мозга подразделяется на структурные единицы, а именно: зоны, поля, области и подобласти.

Кора мозга классифицируется на следующие проекционные зоны:

  • Первичные
  • Вторичные
  • Третичные

В первичной зоне располагаются определенные нейронные клетки, к которым постоянно поступает рецепторный импульс (слуховой, зрительный). Вторичный отдел характеризуется наличием периферических отделов-анализаторов. Третичная принимает обработанные данные от первичной и вторичной зоны, а сама отвечает за условные рефлексы.

Также кора полушарий головного мозга подразделяется на ряд отделов или зон, которые позволяют регулировать множество человеческих функций.

Выделяет следующие зоны:

  • Сенсорные - участки, в которых располагаются зоны коры головного мозга:
    • Зрительные
    • Слуховые
    • Вкусовые
    • Обонятельные
  • Моторные. Это корковые области, раздражение которых может привести к определенным двигательным реакциям. Находятся в передней центральной извилине. Ее повреждение может привести к существенным двигательным нарушениям
  • Ассоциативные. Данные корковые отделы находятся рядом с сенсорными зонами. Импульсы нервных клеток, которые направляются в сенсорную зону, формируют возбуждающий процесс ассоциативных отделов. Их поражение влекут за собой тяжелые нарушения процесса обучения и функций памяти

Функции долей коры головного мозга

Кора большого мозга и подкорка выполняют ряд человеческих функций. Непосредственно сами доли коры головного мозга содержат в себе такие необходимые центры, как:

  • Двигательный, речевой центр (центр Брока). Располагается в нижней области лобной доли. Его повреждение может полностью нарушить речевую артикуляцию, то есть больной может понимать, что ему говорят, однако ответить не может
  • Слуховой, речевой центр (центр Вернике). Находится в левой височной доле. Повреждение этой области может привести к тому, что человек будет не способен понять, что говорит другой человека, при этом способность излагать свои мысли остается. Также в этом случае серьёзно нарушается письменная речь

Функции речи выполняются сенсорными и двигательными зонами. Ее функции связаны с письменной речью, а именно чтением и письмом. Зрительная кора и головной мозг регулируют эту функцию.

Повреждение зрительного центра полушарий головного мозга ведет к полной потере навыков чтения и письма, а также к возможной потере зрения.

В височной доле расположен центр, который отвечает за процесс запоминание. Пациент с поражением данного участка не может запомнить названия определенных вещей. Однако само значение и функции предмета он понимает и может их описать.

Например, вместо слова «кружка» человек говорит: «это то, куда наливают жидкость, чтобы затем выпить».

Патологии коры мозга

Существует огромное количество заболеваний, поражающих мозг человека и в том числе его корковую структуру. Поражение коры приводит к нарушению работы ее ключевых процессов, а также снижает ее работоспособность.

К наиболее распространенным заболеваниям корковой части относятся:

  • Болезнь Пика. Развивается у людей в пожилом возрасте и характеризуется отмиранием нервных клеток. При этом внешние проявления при данном заболевании практически идентичны болезни Альцгеймера, что можно заметить на этапе диагностирования, когда мозг похож на иссушенный грецкий орех. Стоит также отметить, что заболевание неизлечимо, единственное, на что направлена терапия так это на подавление или устранение симптоматики
  • Менингит. Данное инфекционное заболевание косвенно затрагивает отделы коры головного мозга. Возникает вследствие поражения коры инфекцией пневмококка и ряда других. Характеризуется головными болями, повышенной температурой, резью в глазах, сонливостью, тошнотой
  • Гипертоническая болезнь. При данном заболевании в коре мозга начинают формироваться очаги возбуждения, а исходящие импульсы от данного очага начинают сужать сосуды, что приводит к резким скачкам артериального давления
  • Кислородное голодание коры головного мозга (гипоксия). Данное патологическое состояние чаще всего развивается в детском возрасте. Возникает вследствие недостатка кислорода или нарушения кровотока в головном мозга. Может привести к невозвратным изменениям нейронной ткани или летальному исходу

Большинство патологий мозга и коры невозможно определить исходя из проявляющейся симптоматики и внешних признаков. Для их выявления требуется прохождение специальных диагностических методов, которые позволяют исследовать практически любые, даже самые труднодоступные места и впоследствии определить состояние того или иного участка, а также проанализировать его работу.

Область коры диагностируется с помощью различных методик, о которых мы более подробно расскажем в следующей главе.

Проведение обследования

Для высокоточного обследования коры головного мозга используются такие методы, как:

  • Магнитно-резонансная и компьютерная томография
  • Энцефалография
  • Позитронно-эмиссионная томография
  • Рентгенография

Также используется ультразвуковое исследование мозга, однако этот метод является наименее эффективных в сравнении с вышеперечисленными методами. Из преимуществ ультразвукового исследования выделяют цену и быстроту обследования.

В большинстве случаев пациентам проводится диагностирование мозгового кровообращения. Для этого могут использоваться дополнительный ряд диагностик, а именно;

  • Ультразвуковая допплерография. Позволяет выявить пораженные сосуды и изменения скорости кровотока в них. Метод обладает высокой информативностью и абсолютной безопасностью для здоровья
  • Реоэнцефалография. Работа этого метода заключается в регистрации электрического сопротивления тканей, что позволяет сформировать линию пульсового кровотока. Позволяет определить состояние сосудов, их тонус и ряд других данных. Обладает меньшей информативностью, чем ультразвуковой способ
  • Рентгеновская ангиография. Это стандартное рентгенологическое исследование, которое дополнительно проводится при помощи внутривенного введения контрастного вещества. Затем проводится сам рентген. В результате распространения вещества по всем организму, на экране подсвечиваются все потоки крови в головном мозге

Данные методы позволяют предоставить точную информацию о состоянии мозга, коры и показателей кровотока. Также существуют и другие способы, которые применяются в зависимости от характера заболевания, состояния пациента и других факторов.

Мозг человека является самым сложным органом, а на его изучение затрачиваются многочисленные ресурсы. Однако даже в эпоху инновационных методик его исследования, изучить определенные его участки не представляется возможным.

Мощность обработки процессов в головном мозге настолько значительна, что даже суперкомпьютер не в состоянии даже близко приблизиться по соответствующим показателям.

Кора большого мозга и сам головной мозг постоянно исследуются, вследствие чего открытие различных новых фактов о нем становиться все больше. Наиболее распространенные открытия:

  • В 2017 году был проведен эксперимент, в котором были задействованы человек и суперкомпьютер. Выяснилось, что даже самая технически оснащенная техника способна сымитировать только 1 секунду мозговой активности. На задачу ушло целых 40 минут
  • Объем человеческой памяти в электронной единице измерения количества данных, составляет около 1000 терабайт
  • Мозг человека состоит более чем из 100 тысяч сосудистых сплетений, 85 млрд. нервных клеток. Также в мозгу имеется около 100 трлн. нейронных связей, которые обрабатывают человеческие воспоминания. Таким образом при познании чего-то нового структурная часть мозга также изменяется
  • Когда человек пробуждается, головной мозг накапливает электрическое поле мощностью 25 ВТ. Этой мощности достаточно, что зажечь лампу накаливания
  • Масса мозга составляет всего 2% от общей массы человека, тем не менее, мозг расходует около 16 % энергии в теле и более 17 % кислорода
  • Головной мозг состоит на 80% из воды и на 60% из жира. Поэтому для поддержания нормальных функций мозгу необходимо здоровое питание. Употребляйте в пищу те продукты, которые содержат омега-3 жирные кислоты (рыба, оливковое масло, орехи) и ежедневно выпивайте необходимое количество жидкости
  • Ученые выяснили, что если человек «сидит» на какой-либо диете, то мозг начинает есть сам себя. А низкие показатели кислорода в крови на протяжении нескольких минут, могут привести к нежелательным последствиям
  • Забывчивость человека является естественным процессом, а уничтожение ненужной информации в мозге позволяет ему оставаться гибким. Также забывчивость может возникать искусственно, например, при употреблении алкоголя, который затормаживает естественные процессы в мозге

Активизация умственных процессов дает возможность генерировать дополнительную мозговую ткань, которая заменяет поврежденную. Поэтому необходимо постоянно умственно развиваться, что значительно снизит риск возникновения слабоумия в уже пожилом возрасте.