Что такое микробиология. Что изучает микробиология

Перечень тестовых заданий. Правильные ответы обозначены " * "

1) К микроорганизмам, не имеющим клеточного строения, относятся:

1. бактерии

*2. вирусы

4. простейшие

2) Впервые увидел бактерии:

*1. А.-В. Левенгук

2. Л. Пастер

3. И. И. Мечников

3) Бактерии, питающиеся за счет готовых органических соединений:

1. аутотрофы

*2. гетеротрофы

4. фагоциты

4) Бактерии, использующие для построения своих клеток диоксид углерода и другие органические соединения:

1. гетеротрофы

3. фагоциты

*4. аутотрофы

5) Нитрифицирующие бактерии являются:

1. олиготрофами

2. фагоцитами

*3. аутотрофами

4. гетеротрофами

6) Основным регулятором поступления органических веществ в клетку является:

*1. цитоплазматическая мембрана

3. хлоропласты

4. плазмиды

7 - Тест) Микроорганизмы, которые приспособились в процессе эволюции к низким температурам:

1. мезофилы

*2. психрофилы

3. термофилы

8) Микроорганизмы одного вида или подвида, выращенные в лабораторных условиях на искусственных питательных средах:

*1. чистая культура

2. смешанная культура

9) Микроорганизмы почвы, способные получать необходимую им энергию от окисления минеральных соединений:

1. олиготрофы

3. автохтоны

*4. автотрофы

10) Обрабатывание мазка хромовой кислотой, карболовым фуксином Пиля и окрашивание метиленовым синим характерно для:

1. метода Шеффера-Фултона

*2. метода Меллера

3. метода Муромцева

4. метода Романовского-Гимза

11) Обрабатывание мазка раствором малахитовой зелени и дополнительное окрашивание водным раствором сафранина характерно для:

1. метода Меллера

2. метода Муромцева

3. метода Романовского-Гимза

*4. метода Шеффера-Фултона

12) Бактерии, имеющие на одном или обоих концах тела пучок жгутиков, называются:

1. монотрихами

2. перитрихами

*3. лофотрихами

4. амфитрихами

13) Скопления бактерий, напоминающие внешне грозди винограда, называются:

*1. стафилококками

2. сарцинами

3. стрептококками

4. диплококками

14) В процентном соотношении вода в микробной клетке составляет:

15) О свежем фекальном загрязнении почвы свидетельствует обнаружение:

1. стафилококков

2. сальмонелл

3. яиц гельминтов

*4. энтерококков

16) При загрязнении органическими веществами в почве обнаруживают микроорганизмы:

1. энтерококки

*2. семейства кишечных бактерий

3. паратифа А и В

4. сальмонеллы

17) Плесневый гриб, имеющий мицелий белого цвета с перегородками:

1. шоколадная плесень

2. гроздевидная плесень

3. головчатая плесень

*4. молочная плесень

18) По окончании работы лицевые части противогазов и респираторов необходимо тщательно мыть:

1. 0,1-%-м раствором перманганата калия

2. 5-%-м раствором соды

*3. 2-%-м раствором соды

4. 0,5-%-м мыльным раствором

20) К химическим средствам дезинфекции относятся:

1. термофильные микробы

*2. фенолы и креоны

4. ультразвук

21) Для чистой почвы коли-титр кишечной палочки должен составлять:

2. не более 10 мг

*3. не более 1 г

22) Для определения количества живых бактерий в нитрагине делают глубинный посев:

1. на маннитный агар-агар

*2. на бобовый агаг-агар

3. на дрожжевой агар-агар

4. на мясопептонный агар-агар

24) Для борьбы с плесенью используют:

1. ксилонафт-5

2. формалин

*4. оксидифенолят натрия

25) Перитрихи-это бактерии:

1. с полярно расположенными пучками жгутиков

*2. со жгутиками по всей поверхности клетки

3. не имеющие жгутиков

4. с двумя полярными жгутиками

26) К осветительной системе биологического микроскопа не относится:

1. конденсор

2. диафрагма

*3. окуляр

4. зеркало

27. Тест.) К прямым санитарно-биологическим показателям эпидемической опасности почвы относятся:

1. обнаружение яиц гельминтов и их личинок

2. обнаружение сальмонелл и бактерий паратифа А и В

3. обнаружение стафилококков и стрептококков

*4. обнаружение патогенных энтеробактерий и энтеровирусов

28) Актиномицеты-это:

2. палочковидные бактерии

*3. ветвящиеся бактерии

4. простейшие

30) Для изучения морфологии плесневых грибов препараты готовят:

1. методом Шеффера-Фултона

2. методом Меллера

3. методом висячей капли

*4. методом раздавленной капли

31) Хранение пестицидов должно происходить в специально оборудованных складах на расстоянии от населённого пункта:

1. не менее 50 м

2. не менее 100 м

*3. не менее 200 м

4. не менее 500 м

32) Антибиотикограмма - это:

*1. определение чувствительности микробов к антибиотикам

2. определение чувствительности антибиотиков к микробам

3. определение чувствительности животных к антибиотикам

4. определение чувствительности растений к антибиотикам

33) Дезинфицирующее средство имеет бактериостатическое действие, когда оно:

*1. задерживает при определённых условиях рост микроорганизмов, но не приводит к их гибели

2. способно убить микробную клетку

3. вызывает в микробной клетке биохимические изменения

4. вызывает в микробной клетке морфологические изменения

34) К основным группам микроорганизмов не относятся:

1. Бактерии

2. Актиномицеты

3. Микоплазмы

*4. Бациллы

35) Отдалённая корневая микрофлора растений располагается:

1. в радиусе 6-10 см от корней

2. в радиусе 2-3 м от корней

*3. в радиусе 50 см от корней

4. в радиусе 1 м от корней

36) Конечными продуктами разложения органических веществ анаэробными микроорганизмами являются:

1. углекислый газ и вода

2. молочная кислота и спирт

3. клетчатка и лигнин

*4. кислоты и спирты

37) При работе с инсектицидами необходимо использовать респираторы:

1. «Лепесток-200», У-2К

2. «Астра-2»

*3. РСУ-22, РПГ-67

4. РПЦ-22, Ф-57

Тест № 38) Для дезинфекции почвы в парниковых хозяйствах используют:

*1. Тиозон

3. метафон

4. бромид метила

39) Термофилы-это бактерии, развивающиеся при температуре:

1. 30-40 градусов

2. 0-10 градусов

*3. 50-70 градусов

4. 70-80 градусов

40) Микроорганизмы, занимающие промежуточное положение между плесневыми грибами и бактериями:

2. плесени

3. микоплазмы

*4. актиномицеты

41) Система мероприятий по уничтожению патогенных или условно-патогенных микроорганизмов во внешней среде или на теле животного:

*1. дезинфекция

2. дезинсекция

3. дератизация

4. кварцевание

42) Бактерии, образующие цепочку при делении кокков:

1. микрококки

*2. стрептококки

3. диплококки

4. сарцины

43) Олиготрофные микроорганизмы почвы - это:

*1. микроорганизмы, способные ассимилировать органические соединения из растворов низкой концентрации

2. микроорганизмы, способные получать необходимую им энергию от окисления минеральных соединений

3. микроорганизмы, разлагающие органические соединения растительного и животного происхождения

4. микроорганизмы, способные разлагать перегнойные соединения почвы

44) Бактерии по типу дыхания подразделяются на:

1. олиготрофы и сапрофиты

2. анаэрофобы и анаэрофаги

3. аэрофобы и анаэрофобы

*4. аэробы и анаэробы

45) О возможности загрязнения почвы патогенными энтеробактериями свидетельствует индекс санитарно-показательных микроорганизмов БГКП (колиформ) и энтерококков в колличестве:

1. до 10 клеток на 1 г почвы

*2. 10 и более клеток на 1 г почвы

3. до 100 клеток на 1 г почвы

4. 10 и более клеток на 10 г почвы

46) К физическим средствам дезинфекции относятся:

1. соли тяжелых металлов

2. термофильные микробы

*3. гамма лучи и ультразвук

4. патогенные грибы

47) Метод, позволяющий определить минимальную концентрацию антибиотика, подавляющего рост исследуемой культуры бактерий:

1. метод диффузии в агар

2. метод дисков

*3. метод серийных разведений

4. антибиотикограмма

49) Извитые бактерии, имеющие тонкие многочисленные завитки:

1. Вибрионы

2. Спириллы

*3. спирохеты

4. стрептококки

50) Один из первых микроскопов изобрел в 1610 году:

1. А.-В. Левенгук

2. Л. Пастер

*4. Г. Галиллей

51) Микроорганизмы, разлагающие органические соединения растительного и животного происхождения - это:

2. олиготрофы

4. Анаэробы

53) При окрашивании препарата по методу Муромцева микробная клетка окрашивается:

1. в голубой цвет

2. в бледно-розовый цвет

3. в фиолетовый цвет

*4. в темно-синий цвет

54) Микроорганизмы, развивающиеся на поверхности растений, называются:

1. Бактериофагами

2. Олиготрофами

*3. Эпифитами

4. актономицетами

56) Микробы, поражающие и подавляющие растения, являются:

1. Активаторами

*2. Ингибиторами

3. Фагоцитами

57 Тест.) Для количественного учета почвенных микроорганизмов используют:

1. аппликационный метод

2. метод титров

*3. метод питательных пластин в сочетании с методом последовательных разведений

4. метод отмыва корней

№ 60 Классы иммуноглобулинов, их характеристика.

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.

Иммуноглобулин класса G . Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70-80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG - 21 день.

IgG - мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3-4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM - 5 дней.

На его долю приходится около 5-10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2-4-летнему возрасту.

IgM филогенетически - наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного - опре­деляется уже на 20-й неделе внутриутробного развития.

Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.

Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

Сывороточный IgA : На его долю прихо­дится около 10-15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA - 6 дней.

IgA - мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.

IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности.

Секреторный IgA : В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

Синтезируется зрелыми В-лимфоцитами и их по­томками - плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме - его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.

Секреторная форма IgA - основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко - примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса - около 190 кДа, константа седиментации - примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10-15 годам жизни.

Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью - тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа - реакция I типа.

Иммуноглобулин класса D . Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.

Микробиологией называют науку о микроскопических живых существах, размер которых не превышает 1 мм. Такие организмы можно рассмотреть только с помощью увеличительных приборов. Объектами микробиологии являются представители разных групп живого мира: бактерии, археи, простейшие, микроскопические водоросли, низшие грибы. Все они характеризуются малыми размерами и объединяются общим термином «микроорганизмы».

Микроорганизмы представляют собой самую большую группу живых существ на Земле, и ее члены распространены повсеместно.

Место микробиологии в системе биологических наук определяется спецификой ее объектов, которые, с одной стороны, в большинстве своем представляют собой одну клетку, а с другой - являются полноценным организмом. Как наука об определенном классе объектов и их разнообразии микробиология аналогична таким дисциплинам, как ботаника и зоология. В то же время она относится к физиолого-биохимической ветви биологических дисциплин, так как изучает функциональные возможности микроорганизмов, их взаимодействие с окружающей средой и другими организмами. И наконец, микробиология - это наука, исследующая общие фундаментальные законы существования всего живого, явления на стыке одно- и многоклеточности, развивающая представления об эволюции живых организмов.

Значение микроорганизмов в природных процессах и человеческой деятельности

Роль микробиологии определяется значением микроорганизмов в природных процессах и в человеческой деятельности. Именно они обеспечивают протекание глобального круговорота элементов на нашей планете. Такие его стадии, как фиксация молекулярного азота, денитрификация или минерализация сложных органических веществ, были бы невозможны без участия микроорганизмов. На деятельности микроорганизмов основан целый ряд необходимых человеку производств продуктов питания, различных химических веществ, лекарственных препаратов и т.д. Микроорганизмы используются для очистки окружающей среды от различных природных и антропогенных загрязнений. В то же время многие микроорганизмы являются возбудителями заболеваний человека, животных, растений, а также вызывают порчу продуктов питания и различных промышленных материалов. Представители других научных дисциплин часто используют микроорганизмы в качестве инструментов и модельных систем при проведении экспериментов.

История микробиологии

История микробиологии исчисляется примерно с 1661 г, когда голландский торговец сукном Антони ван Левенгук (1632-1723) впервые описал микроскопические существа, наблюдаемые им в микроскоп собственного изготовления. В своих микроскопах Левенгук использовал одну короткофокусную линзу, закрепленную в металлическую оправу. Перед линзой находилась толстая игла, к кончику которой прикреплялся исследуемый объект. Иглу можно было передвигать относительно линзы с помощью двух фокусирующих винтов. Линзу следовало приложить к глазу и через нее рассматривать объект на кончике иглы. Будучи по складу характера любознательным и наблюдательным человеком, Левенгук изучил различные субстраты естественного и искусственного происхождения, рассмотрел под микроскопом огромное количество объектов и сделал очень точные рисунки. Он исследовал микроструктуру растительных и животных клеток, сперматозоиды и эритроциты, строение сосудов растений и животных, особенности развития мелких насекомых. Достигнутое увеличение (50-300 раз) позволило Левенгуку увидеть микроскопические существа, названные им «зверушками», описать их основные группы, а также сделать вывод о том, что они вездесущи. Свои заметки о представителях мира микробов (простейших, плесневых грибах и дрожжах, различных формах бактерий - палочковидных, сферических, извитых), о характере их движения и устойчивых сочетаниях клеток Левенгук сопровождал тщательными зарисовками и в виде писем направлял в Английское Королевское общество, которое имело целью поддерживать обмен информацией среди научной общественности. После смерти Левенгука изучение микроорганизмов долго сдерживалось несовершенством увеличительных приборов. Только к середине XIX века были созданы модели световых микроскопов, позволившие другим исследователям детально описать основные группы микроорганизмов. Этот период истории микробиологии можно условно назвать описательным.

Физиологический этап развития микробиологии начался приблизительно с середины 19-го века и связан он с работами французского химика-кристаллографа Луи Пастера (1822-1895) и немецкого сельского врача Роберта Коха (1843-1910). Эти ученые положили начало экспериментальной микробиологии и существенно обогатили методологический арсенал этой науки.

При исследовании причин прокисания вина Л.Пастер установил, что сбраживание виноградного сока и образование спирта осуществляют дрожжи, а порчу вина (появление посторонних запахов, вкусов и ослизнение напитка) вызывают другие микробы. Для предохранения вина от порчи Пастер предложил способ тепловой обработки (нагревание до 70 о С) сразу после брожения, чтобы уничтожить посторонние бактерии. Такой прием, применяемый и сегодня для предохранения молока, вина и пива, получил название «пастеризация».

Исследуя другие виды брожения, Пастер показал, что каждое брожение имеет главный конечный продукт и вызывается микроорганизмами определенного типа. Эти исследования привели к открытию неизвестного ранее образа жизни - анаэробного (бескислородного) метаболизма , при котором кислород не только не нужен, но и часто вреден для микроорганизмов. В то же время для значительного числа аэробных микроорганизмов кислород является необходимым условием их существования. Изучая на примере дрожжей возможность переключения с одного типа обмена веществ на другой, Л.Пастер показал, что анаэробный метаболизм энергетически менее выгоден. Микроорганизмы, способные к такому переключению, он назвал факультативными анаэробами .

Пастер окончательно опроверг возможность самозарождения живых существ из неживой материи в обычных условиях. К тому времени вопрос о самозарождении животных и растений из неживого материала был уже решен отрицательно, а относительно микроорганизмов спор продолжался. Опыты итальянского ученого Ладзаро Спалланцани и французского исследователя Франсуа Аппера по длительному прогреванию питательных субстратов в герметичных сосудах для предотвращения развития микробов подвергались критике сторонников теории самозарождения: они считали, что именно укупорка сосудов препятствует проникновению внутрь некой «жизненной силы». Пастером был проведен изящный эксперимент, поставивший точку в этой дискуссии. Прогретый питательный бульон был помещен в открытый стеклянный сосуд, горлышко которого было вытянуто трубкой и S-образно изогнуто. Воздух мог беспрепятственно проникать внутрь колбы, а клетки микроорганизмов оседали в нижнем изгибе горлышка и не попадали в бульон. В этом случае бульон оставался стерильным неопределенно долго. Если же колбу наклоняли так, что жидкость заполняла нижний изгиб, а затем бульон возвращали обратно в сосуд, то внутри быстро начинали развиваться микроорганизмы.

Работы по изучению «болезней» вина позволили ученому предположить, что возбудителями инфекционных заболеваний животных и человека также могут быть микроорганизмы. Пастер выделил возбудителей ряда болезней и изучил их свойства. Опыты с патогенными микроорганизмами показали, что при определенных условиях они становились менее агрессивными и не убивали зараженный организм. Пастер сделал вывод о возможности прививать ослабленных возбудителей здоровым и зараженным людям и животным, чтобы стимулировать защитные силы организма в борьбе с инфекцией. Ученый назвал материал для прививок вакциной, а сам процесс - вакцинацией. Пастер разработал способы прививок против ряда опасных заболеваний животных и человека, в том от бешенства.

Роберт Кох, начав с доказательства бактериальной этиологии сибирской язвы, затем выделил возбудителей многих болезней в чистой культуре. В своих экспериментах он использовал мелких подопытных животных, а также наблюдал под микроскопом развитие бактериальных клеток в кусочках тканей зараженных мышей. Кохом были разработаны способы выращивания бактерий вне организма, различные методы окраски препаратов для микроскопии и предложена схема получения чистых культур микроорганизмов на твердых средах в виде отдельных колоний. Эти простые приемы до сих пор используются микробиологами всего мира. Кох окончательно сформулировал и экспериментально подтвердил постулаты, доказывающие микробное происхождение заболевания:

  1. микроорганизм должен присутствовать в материале больного;
  2. выделенный в чистой культуре, он должен вызывать ту же болезнь у экспериментально зараженного животного;
  3. из этого животного возбудитель должен быть опять выделен в чистую культуру, и две эти чистые культуры должны быть одинаковыми.

Эти правила получили в дальнейшем название «триада Коха». При исследовании возбудителя сибирской язвы ученый наблюдал образование клетками особых плотных телец (спор). Кох пришел к выводу, что устойчивость этих бактерий в окружающей среде связана со способностью к спорообразованию. Именно споры в течение длительного времени способны заражать скот и в тех местах, где ранее находились больные животные или устраивались скотомогильники.

В 1909 г. за труды по иммунитету русский физиолог Илья Ильич Мечников (1845-1916) и немецкий врач-биохимик Пауль Эрлих (1854—1915) получили Нобелевскую премию по физиологии и медицине.

И.И.Мечников разработал фагоцитарную теорию иммунитета, рассматривавшую процесс поглощения лейкоцитами животных чужеродных агентов как защитную реакцию макроорганизма. Инфекционное заболевание представлялось в этом случае как противостояние патогенных микроорганизмов и фагоцитов организма-хозяина, а выздоровление означало «победу» фагоцитов. В дальнейшем, работая в бактериологических лабораториях сначала в Одессе, а потом в Париже, И.И.Мечников продолжал изучение фагоцитоза, а также принимал участие в исследовании возбудителей сифилиса, холеры и других инфекционных заболеваний и разработке ряда вакцин. На склоне лет И.И.Мечников заинтересовался проблемами старения человека и обосновал полезность использования в пище больших количеств кисломолочных продуктов, содержащих «живые» закваски. Он пропагандировал использование суспензии молочнокислых микроорганизмов, утверждая, что такие бактерии и образуемые ими молочнокислые продукты способны подавлять гнилостные микроорганизмы, производящие вредные шлаки в кишечнике человека.

П.Эрлих, занимаясь экспериментальной медициной и биохимией лекарственных соединений, сформулировал гуморальную теорию иммунитета, согласно которой макроорганизм для борьбы с инфекционными агентами производит специальные химические вещества - антитела и антитоксины, нейтрализующие микробные клетки и выделяемые ими агрессивные субстанции. П.Эрлих разработал методы лечения ряда инфекционных заболеваний и участвовал в создании препарата для борьбы с сифилисом (сальварсана). Ученый первым описал феномен приобретения патогенными микроорганизмами устойчивости к лекарственным препаратам.

Русский эпидемиолог Николай Федорович Гамалея (1859-1948) изучал пути передачи и распространения таких серьезных инфекций как бешенство, холера, оспа, туберкулез, сибирская язва и некоторые заболевания животных. Им усовершенствован разработанный Л.Пастером способ профилактических прививок и предложена вакцина против холеры человека. Ученый разработал и внедрил комплекс санитарно-гигиенических и противоэпидемических мероприятий по борьбе с чумой, холерой, оспой, сыпным и возвратным тифами и другими инфекциями. Н.Ф.Гамалея открыл вещества, растворяющие бактериальные клетки (бактериолизины), описал явление бактериофагии (взаимодействия вирусов и бактериальной клетки) и внес существенный вклад в изучение микробных токсинов.

Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами русского ученого Сергея Николаевича Виноградского (1856-1953) и голландского исследователя Мартинуса Бейеринка (1851-1931). Эти ученые изучали группы микроорганизмов, способных осуществлять химические превращения основных элементов и участвовать в биологически важных круговоротах на Земле. С.Н.Виноградский работал с микроорганизмами, использующими неорганические соединения серы, азота, железа и открыл уникальный образ жизни, свойственный только прокариотам, при котором для получения энергии используется восстановленное неорганическое соединение, а для биосинтезов - углерод углекислого газа. Ни животные, ни растения не могут существовать таким способом.

С.Н.Виноградский и М.Бейеринк независимо друг от друга показали способность некоторых прокариот использовать атмосферный азот в своем обмене веществ (фиксировать молекулярный азот). Ими были выделены в виде чистых культур свободноживущие и симбиотические микробы-азотфиксаторы и отмечена глобальная роль таких микроорганизмов в цикле азота. Только прокариотические микроорганизмы могут переводить газообразный азот в связанные формы, используя его для синтеза компонентов клетки. После отмирания азотфиксаторов соединения азота становятся доступными для других организмов. Таким образом, азотфиксирующие микроорганизмы замыкают биологический круговорот азота на Земле.

На рубеже XIX-XX веков русский физиолог растений и микробиолог Дмитрий Иосифович Ивановский (1864-1920) открыл вирус табачной мозаики, тем самым обнаружив особую группу биологических объектов, не имеющих клеточного строения. При исследовании инфекционной природы мозаичной болезни табака ученый попытался очистить сок растения от возбудителя, пропуская его через бактериальный фильтр. Однако после этой процедуры сок был способен заражать здоровые растения, т.е. возбудитель оказался гораздо меньше всех известных микроорганизмов. В дальнейшем оказалось, что целый ряд известных заболеваний вызывается подобными возбудителями. Их назвали вирусами. Увидеть вирусы удалось только в электронный микроскоп. Вирусы являются особой группой биологических объектов, не имеющих клеточного строения, изучением которых в настоящее время занимается наука вирусология.

В 1929 г. английским бактериологом и иммунологом Александром Флемингом (1881-1955) был открыт первый антибиотик пенициллин. Ученый интересовался вопросами развития инфекционных болезней и действия на них различных химических препаратов (сальварсана, антисептиков). Во время Первой мировой войны в госпиталях раненые сотнями умирали от заражения крови. Повязки с антисептиками лишь немного облегчали состояние больных. Флеминг поставил опыт, создав модель рваной раны из стекла и заполнив ее питательной средой. В качестве «микробного загрязнения» он использовал навоз. Промывая стеклянную «рану» раствором сильного антисептика и затем заполняя ее чистой средой Флеминг показал, что антисептики не убивают микроорганизмы в неровностях «раны» и не останавливают инфекционный процесс. Осуществляя множество посевов на твердые среды в чашках Петри, ученый проверял антимикробный эффект различных выделений человека (слюны, слизи, слезной жидкости) и открыл лизоцим, убивающий некоторые болезнетворные бактерии. Чашки с посевами сохранялись Флемингом длительное время и многократно просматривались. В тех чашках, куда случайно попали споры грибов и выросли колонии плесени, ученый заметил отсутствие роста бактерий вокруг этих колоний. Специально поставленные эксперименты показали, что вещество, выделяемое плесневым грибом из рода Penicillium губительно для бактерий, но не опасно для подопытных животных. Флеминг назвал это вещество пенициллином. Использование пенициллина в качестве лекарства стало возможным только после выделения его из питательного бульона и получения в химически чистом виде (в 1940 г.), что в дальнейшем привело к разработке целого класса лекарственных препаратов, названных антибиотиками. Начались активные поиски новых продуцентов антимикробных веществ и выделение новых антибиотиков. Так, в 1944 г. американский микробиолог Зельман Ваксман (1888-1973) получил с помощью ветвящихся бактерий рода Streptomyces широко применяемый антибиотик стрептомицин.

Ко второй половине XIX века микробиологами был накоплен огромный материал, свидетельствующий о чрезвычайном разнообразии типов микробного обмена веществ. Изучению многообразия жизненных форм и выявлению их общих черт посвящены работы голландского микробиолога и биохимика Алберта Яна Клюйвера (1888-1956) и его учеников. Под его руководством было проведено сравнительное изучение биохимии далеко отстоящих друг от друга систематических и физиологических групп микроорганизмов, а также анализ данных физиологии и генетики. Эти работы позволили делать вывод об однотипности макромолекул, составляющих все живое, и об универсальности биологической «энергетической валюты» - молекул АТФ. Разработка общей схемы метаболических путей в значительной степени базируется на исследованиях фотосинтеза высших растений и бактерий, проведенных учеником А.Я.Клюйвера Корнелиусом ван Нилем (1897-1985). К. ван Ниль изучил обмен веществ различных фотосинтезирующих прокариот и предложил обобщающее суммарное уравнение фотосинтеза: CO 2 +H 2 A+ һν → (CH 2 O) n +A, где H 2 A - либо вода, либо другое окисляемое вещество. Такое уравнение предполагало, что именно вода, а не углекислый газ, разлагается при фотосинтезе с выделением кислорода. К середине XX века выводы А.Я.Клюйвера и его учеников (в частности, К. ван Ниля) легли в основу принципа биохимического единства жизни.

Развитие отечественной микробиологии представлено различными направлениями и деятельностью многих известных ученых. Целый ряд научных учреждений нашей страны носит имена многих из них. Так, Лев Семенович Ценковский (1822-1877) изучил большое число простейших, микроводорослей, низших грибов и сделал вывод об отсутствии четкой границы между одноклеточными животными и растениями. Он также разработал способ прививки против сибирской язвы с применением «живой вакцины Ценковского» и организовал пастеровскую станцию вакцинации в Харькове. Георгий Норбертович Габричевский (1860-1907) предложил способ лечения дифтерии с помощью сыворотки и участвовал в создании производства бактериальных препаратов в России. Ученик С.Н.Виноградского Василий Леонидович Омелянский (1867-1928) исследовал микроорганизмы, участвующие в превращениях соединений углерода, азота, серы и в процессе анаэробного разложения целлюлозы. Его работы расширили представления о деятельности микроорганизмов почвы. В.Л.Омелянский предложил схемы круговоротов биогенных элементов в природе. Георгий Адамович Надсон (1867-1939) сначала занимался микробной геохимической деятельностью и воздействием различных повреждающих факторов на микробные клетки. В дальнейшем его работы были посвящены изучению наследственности и изменчивости микроорганизмов и получению устойчивых искусственных мутантов низших грибов под действием излучений. Одним из основоположников морской микробиологии является Борис Лаврентьевич Исаченко (1871-1948). Им была высказана гипотеза о биогенном происхождении месторождений серы и кальция. Владимир Николаевич Шапошников (1884-1968) является основателем отечественной технической микробиологии. Его работы по физиологии микроорганизмов посвящены изучению различных видов брожения. Им открыто явление двухфазности ряда микробиологических процессов и разработка способов управления ими. Исследования В.Н.Шапошникова стали основой для организации в СССР микробиологических производств органических кислот и растворителей. Работы Зинаиды Виссарионовны Ермольевой (1898-1974) внесли существенный вклад в физиологию и биохимию микроорганизмов, медицинскую микробиологию, а также способствовали становлению микробиологического производства ряда отечественных антибиотиков. Так, она исследовала возбудители холеры и другие холероподобные вибрионы, их взаимодействие с организмом человека и предложила санитарные нормы хлорирования водопроводной воды в качестве средства профилактики этого опасного заболевания. Ею был создан и применен для профилактики препарат холерного бактериофага, а в дальнейшем - и комплексный препарат против холеры, дифтерии и брюшного тифа. Применение лизоцима в медицинской практике основано на работах З.В.Ермольевой по обнаружению новых растительных источников лизоцима, установлению его химической природы, разработке метода выделения и концентрирования. Получение отечественного штамма продуцента пенициллина и организация промышленного производства препарата пенициллина-крустозина в годы Великой Отечественной войны - это неоценимая заслуга З.В.Ермольевой. Эти исследования явились импульсом для поиска и селекции отечественных продуцентов других антибиотиков (стрептомицина, тетрациклина, левомицетина, экмолина). Работы Николая Александровича Красильникова (1896-1973) посвящены изучению мицелиальных прокариотических микроорганизмов - актиномицетов. Подробное исследование свойств этих микроорганизмов позволило Н.А.Красильникову создать определитель актиномицетов. Ученый был одним из первых исследователей явления антагонизма в мире микробов, что позволило ему выделить актиномицетный антибиотик мицетин. Н.А.Красильников изучал также взаимодействие актиномицетов с другими бактериями и высшими растениями. Его работы по почвенной микробиологии посвящены роли микроорганизмов в почвообразовании, распределению их в почвах и влиянию на плодородие. Ученица В.Н.Шапошникова, Елена Николаевна Кондратьева (1925-1995) возглавляла изучение физиологии и биохимии фотосинтезирующих и хемолитотрофных микроорганизмов. Ею подробно проанализированы особенности метаболизма таких прокариот и выявлены общие закономерности фотосинтеза и углеродного обмена. Под руководством Е.Н.Кондратьевой был открыт новый путь автотрофной фиксации СО 2 у зеленых несерных бактерий, проведено выделение и подробное изучение штаммов фототрофных бактерий нового семейства. В ее лаборатории была создана уникальная коллекция бактерий-фототрофов. Е.Н.Кондратьева была инициатором исследований метаболизма микроорганизмов-метилотрофов, использующих в своем метаболизме одноуглеродные соединения.

В XX веке микробиология полностью сложилась как самостоятельная наука. Дальнейшее ее развитие происходило с учетом открытий, сделанных в других областях биологии (биохимии, генетике, молекулярной биологии и т.д.). В настоящее время многие микробиологические исследования проводятся совместно специалистами разных биологических дисциплин. Многочисленные достижения микробиологии конца XX - начала XXI веков будут кратко изложены в соответствующих разделах учебника.

Основные направления в современной микробиологии.

Уже к концу XIX века микробиология в зависимости от выполняемых задач начинает подразделяться на ряд направлений. Так, исследования основных законов существования микроорганизмов и их разнообразия относят к общей микробиологии, а частная микробиология изучает особенности их разных групп. Задача природоведческой микробиологии - выявление способов жизнедеятельности микроорганизмов в естественных местах обитания и их роли в природных процессах. Особенности болезнетворных микроорганизмов, вызывающих заболевания человека и животных, и их взаимодействие с организмом хозяина изучают медицинская и ветеринарная микробиология, а микробные процессы в земледелии и животноводстве исследует сельскохозяйственная микробиология. Почвенная, морская, космическая и т.д. микробиология - это разделы, посвященные свойствам специфических для этих природных сред микроорганизмам и процессам, с ними связанным. И наконец, промышленная (техническая) микробиология как часть биотехнологии изучает свойства микроорганизмов, используемых для различных производств. В то же время от микробиологии отделяются новые научные дисциплины, занимающиеся изучением определенных более узких групп объектов (вирусология, микология, альгология и др.). В конце XX века усиливается интеграция биологии наук и многие исследования происходят на стыке дисциплин, образуя такие направления, как молекулярная микробиология, генная инженерия и др.

В современной микробиологии можно выделить несколько основных направлений. С развитием и совершенствованием методологического арсенала биологии активизировались фундаментальные микробиологические исследования, посвященные выяснению путей метаболизма и способов их регуляции. Бурно развивается систематика микроорганизмов, ставящая цель создать такую классификацию объектов, которая отражала бы место микроорганизмов в системе всего живого, родственные связи и эволюцию живых существ, т.е. осуществить построение филогенетического древа. Изучение роли микроорганизмов в природных процессах и антропогенных системах (экологическая микробиология) крайне актуально в связи с повышенным интересом к современным экологическим проблемам. Значительное внимание привлекают исследования популяционной микробиологии, занимающейся выяснением природы межклеточных контактов и способов взаимодействия клеток в популяции. Не теряют актуальности те направления микробиологии, которые связаны с применением микроорганизмов в человеческой деятельности.

Дальнейшее развитие микробиологии в XXI веке наряду с накоплением фундаментальных знаний призвано помочь решению ряда глобальных проблем человечества. В результате варварского отношения к природе и повсеместного загрязнения окружающей среды антропогенными отходами возник значительный дисбаланс в круговоротах веществ на нашей планете. Только микроорганизмы, обладая широчайшими метаболическими возможностями, высокой пластичностью обмена веществ и значительной устойчивостью к повреждающим факторам, могут преобразовать стойкие и токсичные загрязнения в безвредные для природы соединения, а в ряде случаев и в пригодные для дальнейшего использования человеком продукты. Тем самым понизится выброс так называемых «парниковых газов» и стабилизируется газовый состав атмосферы Земли. Осуществляя защиту окружающей среды от загрязнений, микроорганизмы одновременно будут способствовать постоянству глобального круговорота элементов. Микроорганизмы, развиваясь на отходах промышленности и сельского хозяйства, могут служить альтернативными источниками топлива (биогаза, биоэтанола и других спиртов, биоводорода и т.д.). Это позволит решить энергетические проблемы человечества, связанные с истощением полезных ископаемых (нефти, угля, природного газа, торфа). Восполнение продовольственных ресурсов (особенно белковых) возможно путем введения в рацион питания дешевой микробной биомассы быстрорастущих штаммов, полученной на отходах пищевой промышленности или на очень простых средах. Сохранению здоровья человеческой популяции будут способствовать не только тщательное изучение свойств патогенных микроорганизмов и выработка методов защиты от них, но и переход на «природные лекарства» (пробиотики), повышающие иммунный статус человеческого организма.

Наука о формах, сочетаниях и размерах клеток микроорганизмов, их дифференциации, а также размножении и развитии. - наука о многообразии микроорганизмов и их классификации по степени родства. В настоящее время в основу систематики микроорганизмов положены молекулярно-биологические методы.- наука об обмене веществ (метаболизме) микроорганизмов, включающая способы потребления питательных веществ, их разложение, синтез веществ, а также способы получения микроорганизмами энергии в результате процессов брожения , анаэробного дыхания , аэробного дыхания и фотосинтеза .

  • Экология микроорганизмов - наука, изучающая влияние факторов внешней среды на микроорганизмы, взаимоотношения микроорганизмов с другими микроорганизмами и роль микроорганизмов в экосистемах.
  • Прикладная микробиология и биотехнология микроорганизмов - наука о практическом применении микроорганизмов, производстве биологически активных веществ (антибиотиков, ферментов, аминокислот, низкомолекулярных регуляторных соединений, органических кислот) и биотоплива (биогазы, спирты) с помощью микроорганизмов, условиях образования и способы регуляции образования данных продуктов.
  • Рекомендуемая литература

    Поль де Крюи. Охотники за микробами. Научно-популярное издание.

    Гучев М.В., Минеева Л.А. Микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Общая микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Микробиология. Учебник для ВУЗов.

    Практикум по микробиологии. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Экология микроорганизмов. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Заварзин Г.А. Лекции по природоведческой микробиологии. Научное издание.

    Колотилова Н.Н., Заварзин Г.А. Введение в природоведческую микробиологию. Учебное пособие для ВУЗов.

    Кондратьева Е.Н. Автотрофные прокариоты. Учебное пособие для ВУЗов.

    Егоров Н.С. Основы учения об антибиотиках. Учебник для ВУЗов.

    Промышленная микробиология. Под ред. Н.С. Егорова. Учебное пособие для ВУЗов.

    Микробиология как наука. Предмет и задачи микробиологии.

    По эпидпоказаниям живой аттенуированной туляремийной вакциной.

    Специфическое лечение – не разработано.

    Микробиология как наука. Предмет и задачи микробиологии.

    Микробиология (от греч. micros – малый, bios – жизнь, logos – учение) – наука о мельчайших невидимых невооруженным взглядом живых объектах – микроорганизмах, закономерностях их развития и тех изменениях, которые они вызывают в среде обитания и в окружающей среде.

    Термин «микроорганизмы» ввел французский ученый Седдило в конце XIX века.

    Микроорганизмы – наиболее древняя форма организации жизни на Земле, они появились задолго до возникновения растений и животных – примерно 3-4 млрд. лет тому назад. В настоящее время они представляют собой по количеству самую значительную и самую разнообразную часть организмов, населяющих биосферу Земли. Они находятся в воздухе, воде, почве, пище, на окружающих нас предметах, на поверхности и внутри нашего тела и других организмов животного и растительного мира, и даже в космосе.

    Все микроорганизмы подразделяются на:

    Ø патогенные (от греч. patos – болезнь) – болезнетворные, т.е. способные вызвать инфекционное заболевание;

    Ø условно-патогенные – вызывают заболевания при определенных условиях;

    Ø сапрофитные (от греч. sapros – гнилой и phyton – растения) – непатогенные/неболезнетворные, не вызывают заболевания у человека.

    Название «микробиология» предложено французским ученым Дюкло . Микробиология зародилась в пределах биологии. Затем она постепенно дифференцировалась на самостоятельные научные дисциплины :

    Ø частная;

    Ø медицинская;

    Ø клиническая (изучает микроорганизмы, вызывающие заболевания в ЛПУ);

    Ø санитарная;

    Ø ветеринарная (изучает микроорганизмы, патогенные для животных);

    Ø сельскохозяйственная (изучает микроорганизмы – вредителей растений);

    Ø морская (изучает микроорганизмы – обитателей морей и океанов);

    Ø космическая (изучает микроорганизмы, населяющих космическое пространство);

    Ø техническая микробиология (использует микроорганизмы для получения разнообразных продуктов, необходимых для жизнедеятельности людей – вакцины, диагностикумы, ферменты и т.д.).

    Предмет изучении общей микробиологии – общие закономерности, биологические свойства микроорганизмов вне зависимости от их видовой принадлежности: морфологию, физиологию, биохимию, генетику, экологию, эволюцию и другие признаки микроорганизмов.

    Предмет изучении частной микробиологии – особенности биологических свойств микроорганизмов, характерных определенному виду.

    Предмет изучения медицинской микробиологии патогенные и условно-патогенные микроорганизмы , процессы их взаимодействия с макроорганизмом.

    Задачи медицинской микробиологии:

    Ø микробиологическая диагностика инфекционных заболеваний;

    Ø разработка методов специфической профилактики;

    Ø разработка этиотропного лечения инфекционных болезней.

    В составе медицинской микробиологии выделяю следующие разделы :

    Ø бактериология (объект изучения – бактерии);

    Ø вирусология (объект изучения – вирусы);

    Ø микология (объект изучения – грибы);

    Ø прототозоология (объект изучения – простейшие);

    Ø альгология (объект изучения – микроскопичские водоросли);

    Ø иммунология (объект изучения – защитных реакции организма) и др.

    Предмет изучения санитарной микробиологии , тесно связанной с медицинской микробиологией, – санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов , разработка санитарно-микробиологических нормативови методов индикации патогенных микроорганизмов в различных объектах окружающей среды.

    Исторические этапы развития микробиологии.

    Выделяют 5 исторических периода развития и становления микробиологии как науки.

    I. Эвристический период .

    Многие тысячелетия человечество пользовалось плодами жизнедеятельности микроорганизмов, не подозревая об их существовании. Хотя мысль о наличии в природе невидимых живых существ возникала у многих исследователей. Гиппократ , Парацельс (VI век до н.э.) высказывали предположение о том, что «миазмы», обитающие в болотах, вызывают различные болезни у человека, попадая в его организм через рот. В наиболее законченной форме идею сформулировал Джироламо Фракосторо в труде «О контагиях, контагиозных болезнях и лечении» (1546 г.): заражение человека может происходить тремя путями – при непосредственном соприкосновении, опосредованно (через предмет) и на расстоянии, но при обязательном участии контагий («зародышей болезней»). Однако это были гипотезы, доказательств которых у них не было.

    II. Описательный период (морфологический) – охватывает вторую половину XVIII века и продолжается до середины XIX века . Связан с созданием микроскопа и открытием микроскопических существ, невидимых глазом человека. Первый микроскоп был создан в 1590 г. Гансом и Захарием Янсенами , но у него было увеличение всего лишь в 32 раза. Голландский натуралист Антоний Левенгук (1632-1723 гг.) сконструировал микроскоп с увеличением в 160-300 раз, при помощи которого ему удалось обнаружить мельчайших «живых зверьков» (анималькусов ) в дождевой воде, зубном налете и других материалах. Зарисованные им формы микроорганизмов были удивительно правдивы.

    В этот же период в 1771 г. выдающийся русский врач Данило Самойлович (1744-1805 гг.) в опыте самозаражения гноем больных чумой доказал роль микроорганизмов в этиологии чумы и возможность предохранения людей от чумы с помощью прививок. Д.С. Самойлович был убежденным сторонником живой природы возбудителя чумы и за 100 с лишним лет до открытия этого микроба пытался обнаружить его. Лишь несовершенство микроскопов того времени помешало ему сделать это. Он предположил возможность искусственного создания невосприимчивости к инфекционному агенту и даже предпринял попытку создания противочумной вакцины. Эти исследования предшествовали работам Э. Дженнера. Работы Д.С. Самойловича внесли большой вклад в разработку мероприятий по борьбе с чумой.

    В 1796 г. Эдвард Дженнер (1749-1823 гг.) создал и успешно применил вакцину для профилактики натуральной оспы, взяв материал от доярки, больной коровьей оспой.

    III. Физиологический период (Пастеровский) (вторая половина XIX века) – «золотой век» микробиологии. С момента обнаружения микроорганизмов, возник вопрос не только об их роли в патологии человека, но и об их устройстве, биологических свойствах, процессах жизнедеятельности, экологии и т.д. Поэтому с середины XIX века началось интенсивное изучение физиологии бактерий.



    Л. Пастер (1822-1895 гг.) – основатель французской школы микробиологии (химик по образованию, талантливый экспериментатор, сделал ряд фундаментальных открытий во многих областях науки, в том числе и в микробиологии), его основные достижения:

    Ø открытие бактериальной природы брожения и гниения при изучение болезней вина и пива;

    Ø предложение мягкого метода стерилизации – пастеризации;

    Ø доказательство невозможности самопроизвольного зарождения жизни (если стерильный бульон оставить в открытой колбе, то он прорастет, но если стерильный бульон поместить в колбу, сообщающуюся с воздухом через спиральную трубку, то бульон не прорастет, т.к бактерии осядут на изогнутых частях трубки);

    Ø создание основ вакцинного дела;

    Ø разработка и получение вакцины против бешенства, сибирской язвы у животных и куриной холеры;

    Ø открытие возбудителей сибирской язвы (Bacillus anthracis), родовой горячки (стрептококки), фурункулеза (стафилококки).

    Р. Кох (1843-1910 гг.) – основатель школы немецких микробиологов, его достижения:

    Ø внедрение в практику микробиологии анилиновых красителей, иммерсионной системы, плотных питательных сред;

    Ø открытие возбудителей туберкулеза и холеры у человека;

    Ø сформулирована триаду критериев, по которым можно было установить связь инфекционного заболевания с определенным микроорганизмом (триада Генле-Коха – эти принципы до Коха выдвигал Генле, а Кох сформулировал и развил):

    1) микроб, предполагаемый в качестве возбудителя болезни, всегда должен обнаруживаться только при данном заболевании, не выделяясь при других болезнях и от здоровых людей;

    2) данный микроб должен быть выделен в чистой культуре;

    3) чистая культура этого микроба должна вызывать у экспериментального животного заболевание с клинической и паталогоанатомической картиной, свойственной заболеванию человека.

    Сейчас эта триада имеет относительное значение, установление роли микроорганизма в развитии инфекционного заболевания не всегда укладывается в рамки триады.

    IV. Иммунологический период (конец XIX – начало XX веков), связан с работами И.И. Мечникова и П. Эрлиха.

    И.И. Мечников (1845-1916 гг.) – один из основоположников иммунологии, описал явление фагоцитоза (клеточная теория иммунитета).

    Пауль Эрлих (1854-1915 гг.) сформулировал теорию гуморального иммунитета, объяснив происхождение антител и их взаимодействие с антигенами.

    В 1908 г. И.И. Мечникову и П. Эрлиху была присуждена Нобелевская премия за работы в области иммунологии.

    Конец XIXознаменовался эпохальным открытием царства вирусов.

    Д.И. Ивановский (1864-1920 гг.) – первооткрыватель вирусов. Будучи сотрудником кафедры ботаники Петербургского университета в 1892 г. при изучении мозаичной болезни табака пришел он к выводу, что заболевание вызвано фильтрующимся агентом, впоследствии названным вирусом.

    1928 г. – А. Флеминг , изучая явления микробного антагонизма, получил нестабильный пенициллин.

    А в 1940 г. – Г. Флори и Э. Чейн получили стабильную форму пенициллина.

    Отечественный пенициллин был разработан в 40-е годы прошлого столетия ленинградским микробиологом З.В. Ермольевой.

    V. Современный период (начался в середине XX века) связан с научно-технической революцией в естествознании.

    1944 г. – О. Эвери, К. Мак-Леод, К. Мак-Карти доказали роль ДНК в передаче наследственной информации.

    1953 г. – Д. Уотсон и Ф. Крик расшифровали структуру ДНК.

    В 60-70 гг. появились работы по генетике бактерий, становление генной инженерии.

    1958 г. – П. Медавар и Гашек описали явление иммунологической толерантности. 1959 г. – Р. Портер и Д. Эдельман смоделировали молекулу иммуноглобулина.

    1982 г. – Р. Галло, 1883 г. Л. Монтанье открыли ВИЧ.

    И ещё 26 файл(а).
    Показать все связанные файлы


    1. Микробиология как наука. Задачи и методы исследования в микробиологии.
    Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы , неразличимые невооруженным глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

    Предмет микробиологии – микроорганизмы, их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни. Для медицинской микробиологии – патогенные и условно-патогенные микроорганизмы.

    Микроорганизмы - наиболее древняя форма организации жизни на Земле, они появились задолго до возникновения растений и животных - примерно 3-4 млрд. лет тому назад.

    Задачи микробиологии:

    Задачи медицинской микробиологии:

    1. Изучение биологии патогенных (болезнетворных) и нормальных для человека микробов.

    2. Изучение роли микробов в возникновении, развитии инфекционных (заразных) болезней и формировании иммунного ответа макроорганизма ("хозяина").

    3. Разработка методов микробиологической диагностики, специфического лечения и профилактики инфекционных болезней человека.

    Методы исследования в микробиологии:


    1. Микроскопический - изучение морфологии микробов в окрашенном и неокрашенном состоянии с помощью различных типов микроскопов.

    2. Микробиологический (бактериологические, микологические, вирусологические). Метод основан на выделение чистой культуры возбудителя и ее последующей идентификации.

    3. Химический

    4. Экспериментальный (биологический) - заражение микробами лабораторных животных.

    5. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

    1. Основные периоды в развитии микробиологии и иммунологии.
    Выделяют следующие периоды:

    1. Начальный период
    Вторая половина XIII века по середину XIX. Он связан с созданием Левенгуком простейшего микроскопа и открытием микроскопических существ, невидимых невооруженным взглядом.

    1. Пастеровский период
    Луи Пастер является основоположником микробиологии как науки. Его исследования:

    • брожение

    • роль микробов в круговороте веществ в природе и самопроизвольном зарождении.
    Они составили теоретическую базу современной микробиологии. Пастер установил, что в определенных условиях патогенные микробы теряют свою вирулентность. На основе этого открытия он создает вакцины.

    Рядом с именем Пастера встало имя Роберта Коха, выдающегося мастера прикладных исследований, он открыл возбудителя сибирской язвы, холеры, туберкулеза и других микроорганизмов.


    1. Третий период
    Первая половина XX века. Развитие микробиологии , иммунологии и вирусологии. Здесь важным является открытия Ивановского – возбудители мозаичной болезни табака. Были открыты фильтрующиеся инфекционные агенты - вирусы, L-формы бактерий, микоплазмы. Более интенсивно развивались прикладные аспекты иммунологии. П.Эрлиху разработать гуморальную теорию иммунитета. Мечников – теория фагоцитоза. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин.

    1. Современный период.
    Создание электронного микроскопа сделало видимым мир вирусов и макромолекулярных соединений. Изучение генов, строение вирусов, бактерий на молекулярном уровне. Генная инженерия, расшифровка геномов. Изучена роль ДНК в передаче наследственных признаков. Революция в иммунологии. Она стала наукой, изучающей не только инфекции и защиту от них, но и изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании целостности организма.

    3. Основоположники микробиологии.

    Л.Пастер


    1. изучение микробиологических основ процессов брожения и гниения,

    2. развитие промышленной микробиологии,

    3. выяснение роли микроорганизмов в кругообороте веществ в природе,

    4. открытие анаэробных микроорганизмов ,

    5. разработка принципов асептики,

    6. разработка методов стерилизации,

    7. ослабление (аттенуации) вирулентности. Степень патогенности – вирулентность. Таким образом, если ослабить вирулентность, то можно получить вакцину.

    8. получение вакцин (вакцинных штаммов) – холера и бешенство.

    9. Пастеру принадлежит честь открытия стафилококков, стрептококков

    Р.Кох - немецкий естествоиспытатель, ученик Пастера.


    4. Роль отечественных ученых в развитии микробиологии.


    1. Ценковский Л.С . организовал производство сибиреязвенной вакцины, и 1883 успешно ее использовал для вакцинации скота.

    2. Минх. Доказал, что спирохета возвратного тифа является возбудителем заболевания.

    3. Мочутковский самозаразил себя сыпным тифом (ввел кровь больной), доказав, что возбудитель присутствует в крови больного.

    4. Леша Ф.А. Доказал, что дизентерию могут вызывать простейшие, принадлежащие амебам.

    5. Большое значение в микробиологии сыграл И.И. Мечников. Он был создателем фагоцитарной теории иммунитета. Затем он издает труд «Невосприимчивость к к инфекционным болезням».

    6. В 1886 в Одессе открыта первая бактериологическая станция, заведовал ей Мечников и его помощники Гамель Н.Ф. и Барлах Л.В.

    7. Далее станция открыта в Харькове. Заведовал Виноградский. Он работал в области общей микробиологии. Открыл серо- и железобактерии, нитрифицирующие бактерии – возбудители нитрификации в почве.

    8. Д.И. Ивановский (открыл вирус табачной мозаики, считается основателем вирусологии).

    9. Цинковский (участвовал в разработке методов прививки от сибирской язвы).

    10. Амилянский – написал первый учебник «Основы микробиологии», открыл возбудителя брожения клетчатки , изучил азотофиксирующие бактерии.

    11. Михин – положил начало ветеринарной микробиологии, открыл возбудителя лептоспироза.

    12. Шапошников – основоположник технической микробиологии.

    13. Войткевич – работал с ацидофильной палочкой, считается основоположником лечебного и диетического питания для животных.

    С середины 20 века микробиология как дисциплина была включена в программу обучения студентов.

    5. Основы систематики и номенклатуры микроорганизмов.

    Согласно современной систематике, микроорганизмы к 3 царствам:

    I. Прокариоты:
    * Эубактерии
    1. Грациликуты (тонкая клеточная стенка)
    2. Фирмикуты (толстая клеточная стенка)
    3. Тенерикуты (нет клеточной стенки)
    Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты.
    * Архебактерии
    4. Мендосикуты
    II. Эукариоты: Животные Растения Грибы Простейшие
    III. Неклеточные формы жизни: Вирусы Прионы Плазмиды

    Вид – Род – Семейство – Порядок – Класс – Отдел – Царство.

    Обозначение микроорганизмов включает в себя название рода и вида. Род с большой буквы , вид с маленькой. Родовое название по фамилии автора или морфологии бактерий. Видовое название – по клиническим признакам, морфологии колоний, месту обитания.

    В настоящее время для систематики микроорганизмов используется ряд таксономических систем.

    1. Нумерическая таксономия . Признает равноценность всех признаков. Для ее применения необходимо иметь информацию о многих десятках признаков. Видовая принадлежность устанавливается по числу совпадающих признаков.

    2. Серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками. Наиболее часто применяется в медицинской бактериологии. Недостаток – бактерии не всегда cодержат видоспецифический антиген.

    3. Хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов.

    4. Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации , трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.еографическому месту выявления.

    Специализированные термины:

    Вид – эволюционно сложившаяся совокупность особей, имеющая единый генотип, проявляющийся сходными фенотипическими признаками.

    Вариант – особи одного вида, различающиеся по разным признакам (серовары, хемовары, культивары, морфовары, фаговары).

    Популяция – совокупность особей одного вида, относительно длительно обитающих на определенной территории .

    Культура – совокупность бактерий одного вида (чистая) или нескольких видов (смешанная), выращенная на питательной среде (жидкой или плотной).

    Штамм – чистая культура одного вида бактерий, выделенная в определенное время из одного источника .

    Колония – видимое скопление бактерий одного вида на поверхности или в глубине плотной питательной среды.

    Клон – культура клеток, выращенная из одного микроорганизма методом клонирования.