Перспективные космические материалы. Интересные факты и полезные советы

«Использование металлов» - Ртуть используют для заполнения термометров. В настоящее время многие предметы, которыми мы пользуемся в жизни, сделаны из металлов. Марк Аврелий. Принадлежности для шитья тоже делают из стали. Хороший проводник тепла и электричества (уступает только серебру). Из стали делают домашнюю утварь. Металлы в нашей жизни.

«Урок металлы» - Металлы. Цветные 10%. Интеграция химии с другими предметами. Избыток железа превращает человека в агрессивное существо с жестоким, эгоистичным характером. Химические элементы, составляющие тело человека. Болтливые люди, оказывается, любят поговорить от... обилия в организме ртути. Золото преобладает в организме тщеславных, заносчивых людей.

«Элементы-металлы» - Олово (лат. Олово было известно человеку уже в IV тысячелетии до н. э. Бронзовый век. Анничков мост в С-Петербурге. Чугунное литье. Натрий. Царь-пушка. Золото обладает исключительно высокой теплопроводностью и низким электрическим сопротивлением. Колосс Родосский. Железные швейные иглы. Дискобол. Natrium), мягкий щелочной металл серебристо-белого цвета.

«Коррозия металла» - Общие свойства и получение. Разрушение металлов и сплавов под воздействием окружающей среды называется коррозией. Коррозия металлов. Коррозия металлов Способы получения металлов. Что вы узнаете (план изучения темы). Металлическая связь. Mеталлы в нашей жизни. Из двух металлов корродирует более активный.

«Характеристика металлов» - Железо. Ржавление и коррозия металлов. Хорошая электропроводность. К металлам относятся примерно 70 % всех химических элементов. Металлы составляют одну из основ цивилизации на планете Земля. Общая характеристика. Большое количество натрия и магния содержится в морской воде: - 1,05%, - 0,12%. Разновидность металлов.

«Цветные металлы» - Кимберлитовая трубка “Мир” диаметр 1 500 м, глубина 500 м. Саянский алюминиевый комбинат. Алюминий олово медь вольфрам никель молибден магний серебро. Цветные металлы жаропрочны, хорошо проводят электрический ток, не ржавеют. Титан золото медь вольфрам цинк свинец алюминий олово. Легкие цветные металлы.

Черезмесяц исполнится ровно полвека первому старту ракеты Р-7, которыйсостоялся 15 мая 1957 года. Эта ракета, которая до сих пор носит всехнаших космонавтов, является безусловным триумфом конструкторской идеинад конструкционным материалом. Интересно, что ровно через 30 лет послеее запуска, 15 мая 1987 года, состоялся и первый старт ракеты"Энергия", которая, наоборот, использовала массу экзотическихматериалов, недоступных 30 лет назад.

Когда Сталин поставилперед Королевым задачу копирования Фау-2, многие ее материалы были новыдля тогдашней советской промышленности, но к 1955 году уже исчезлипроблемы, которые могли бы помешать конструкторам воплощать идеи. Ктому же материалы, использованные при создании ракеты Р-7, даже в 1955году не отличались новизной – ведь нужно было учитывать затраты времении денег при серийном производстве ракеты. Поэтому основой ееконструкции стали давно освоенные алюминиевые сплавы.

Раньшемодно было называть алюминий "крылатым металлом", подчеркивая, что есликонструкция не ездит по земле или по рельсам, а летает, то онаобязательно должна быть выполнена из алюминия. На самом деле крылатыхметаллов много, и это определение давно вышло из моды. Спору нет,алюминий хорош, достаточно дешев, сплавы его сравнительно прочны, онлегко обрабатывается и т.д. Но из одного алюминия самолет не построишь.А в поршневом самолете и дерево оказывалось вполне уместным (даже вракете Р-7 в приборном отсеке есть фанерные перегородки!). Унаследовавалюминий от авиации, этим металлом стала пользоваться и ракетнаятехника. Но тут-то как раз и обнаружилась узость его возможностей.

Алюминий

"Крылатый металл", любимец авиаконструкторов. Чистый алюминий втрое легче стали, очень пластичен, но не очень прочен.

Чтобыон стал хорошим конструкционным материалом, из него приходится делатьсплавы. Исторически первым был дуралюмин (дюралюминий, дюраль, как мыего чаще всего зовем) – такое имя дала сплаву немецкая фирма, впервыеего предложившая в 1909 году (от названия города Дюрен). Этот сплав,кроме алюминия, содержит небольшие количества меди и марганца, резкоповышающие его прочность и жесткость. Но есть у дюраля и недостатки:его нельзя сваривать и сложно штамповать (нужна термообработка). Полнуюпрочность он набирает со временем, этот процесс назвали «старением», апосле термообработки состаривать сплав нужно заново. Поэтому детали изнего соединяют клепкой и болтами.

В ракете он годится только на"сухие" отсеки – клепаная конструкция не гарантирует герметичности поддавлением. Сплавы, содержащие магний (обычно не больше 6%), можнодеформировать и сваривать. Именно их больше всего на ракете Р-7 (вчастности, из них изготовлены все баки).

Американские инженерыимели в своем распоряжении более прочные алюминиевые сплавы, содержащиедо десятка разных компонентов. Но прежде всего наши сплавы проигрывализаокеанским по разбросу свойств. Понятно, что разные образцы могутнемного отличаться по составу, а это приводит к разнице в механическихсвойствах. В конструкции часто приходится полагаться не на среднююпрочность, а на минимальную, или гарантированную, которая у нашихсплавов могла быть заметно ниже средней.

В последней четверти XXвека прогресс в металлургии привел к появлению алюминий-литиевыхсплавов. Если до этого добавки в алюминий были направлены только наувеличение прочности, то литий позволял сделать сплав заметно болеелегким. Из алюминий-литиевого сплава был сделан бак для водорода ракеты"Энергия", из него же делают сейчас и баки "Шаттлов".

Наконец,самый экзотический материал на основе алюминия – боралюминиевыйкомпозит, где алюминию отведена та же роль, что и эпоксидной смоле встеклопластике: он удерживает вместе высокопрочные волокна бора. Этотматериал только-только начал внедряться в отечественную космонавтику –из него сделана ферма между баками последней модификации разгонногоблока "ДМ-SL", задействованного в проекте "Морской старт".

Выборконструктора за прошедшие 50 лет стал намного богаче. Тем не менее кактогда, так и сейчас алюминий – металл №1 в ракете. Но, конечно же, естьи целый ряд других металлов, без которых ракета не сможет полететь.

Незаменимыйэлемент любых инженерных конструкций. Железо в виде разнообразныхвысокопрочных нержавеющих сталей – второй по применению металл вракетах.

Везде, где нагрузка не распределена по большойконструкции, а сосредоточена в точке или нескольких точках, стальвыигрывает у алюминия.

Сталь жестче – конструкция из стали,размеры которой не должны "плыть" под нагрузкой, получается почтивсегда компактнее и иногда даже легче алюминиевой. Сталь гораздо лучшепереносит вибрацию, более терпима к нагреву, сталь дешевле, заисключением самых экзотических сортов, сталь, в конце концов, нужна длястартового сооружения, без которого ракета – ну, сами понимаете...

Нои баки ракеты могут быть стальными. Удивительно? Да. Однако перваяамериканская межконтинентальная ракета Atlas использовала баки именноиз тонкостенной нержавеющей стали. Для того чтобы стальная ракетавыиграла у алюминиевой, многое пришлось радикально изменить. Толщинастенок баков у двигательного отсека достигала 1,27 миллиметра (1/20дюйма), выше использовались более тонкие листы, и у самого верхакеросинового бака толщина составляла всего 0,254 миллиметра (0,01дюйма). А водородный разгонный блок Centaur, сделанный по такому жепринципу, имеет стенку толщиной всего лишь с лезвие бритвы – 0,127миллиметра!

Столь тонкая стенка сомнется даже под собственнойтяжестью, поэтому форму она держит исключительно за счет внутреннегодавления: с момента изготовления баки герметизируются, наддуваются ихранятся при повышенном внутреннем давлении.

В процессеизготовления стенки подпираются специальными держателями изнутри. Самаясложная стадия этого процесса – приварка днища к цилиндрической части.Ее обязательно нужно было выполнить за один проход, в результате ее втечение шестнадцати часов делали несколько бригад сварщиков, по двепары каждая; бригады сменяли друг друга через четыре часа. При этомодна из двух пар работала внутри бака.

Нелегкая, что и говорить,работа. Но зато на этой ракете американец Джон Гленн впервые вышел наорбиту. Да и дальше у нее была славная и долгая история, а блок Centaurлетает и по сей день. У "Фау-2", между прочим, корпус тоже был стальным– от стали полностью отказались только на ракете Р-5, там стальнойкорпус оказался ненужным благодаря отделяющейся головной части.

Какой же металл можно поставить на треье место "по ракетности"? Ответ может показаться очевидным. Титан? Оказывается, вовсе нет.

Основнойметалл электро- и тепловой техники. Ну разве не странно? Довольнотяжелый, не слишком прочный, по сравнению со сталью – легкоплавкий,мягкий, по сравнению с алюминием – дорогой, но тем не менее незаменимыйметалл.

Все дело в чудовищной теплопроводности меди – она большев десять раз по сравнению с дешевой сталью и в сорок раз по сравнению сдорогой нержавейкой. Алюминий тоже проигрывает меди потеплопроводности, а заодно и по температуре плавления. А нужна этабешеная теплопроводность в самом сердце ракеты – в ее двигателе. Измеди делают внутреннюю стенку ракетного двигателя, ту, котораясдерживает трехтысячеградусный жар ракетного сердца. Чтобы стенка нерасплавилась, ее делают составной – наружная, стальная, держитмеханические нагрузки, а внутренняя, медная, принимает на себя тепло.

Втоненьком зазоре между стенками идет поток горючего, направляющегося избака в двигатель, и тут-то выясняется, что медь выигрывает у стали:дело в том, что температуры плавления отличаются на какую-то треть, авот теплопроводность – в десятки раз. Так что стальная стенка прогоритраньше медной. Красивый "медный" цвет сопел двигателей Р-7 хорошо виденна всех фотографиях и в телерепортажах о вывозе ракет на старт.

Вдвигателях ракеты Р-7 внутренняя, "огневая", стенка сделана не изчистой меди, а из хромистой бронзы, содержащей всего 0,8% хрома. Этонесколько снижает теплопроводность, но одновременно повышаетмаксимальную рабочую температуру (жаростойкость) и облегчает жизньтехнологам – чистая медь очень вязкая, ее тяжело обрабатывать резанием,а на внутренней рубашке нужно выфрезеровать ребра, которыми онаприкрепляется к наружной. Толщина оставшейся бронзовой стенки – всегомиллиметр, такой же толщины и ребра, а расстояние между ними – около 4миллиметров.

Чем меньше тяга двигателя, тем хуже условияохлаждения – расход топлива меньше, а относительная поверхностьсоответственно больше. Поэтому на двигателях малой тяги, применяемых накосмических аппаратах, приходится использовать для охлаждения не толькогорючее, но и окислитель – азотную кислоту или четырехокись азота. Втаких случаях медную стенку для защиты нужно покрывать хромом с тойстороны, где течет кислота. Но и с этим приходится смиряться, посколькудвигатель с медной огневой стенкой эффективнее.

Справедливостиради скажем, что двигатели со стальной внутренней стенкой тожесуществуют, но их параметры, к сожалению, значительно хуже. И дело нетолько в мощности или тяге, нет, основной параметр совершенствадвигателя – удельный импульс – в этом случае становится меньше начетверть, если не на треть. У "средних" двигателей он составляет 220секунд, у хороших – 300 секунд, а у самых-пресамых "крутых инавороченных", тех, которых на "Шаттле" три штуки сзади, – 440 секунд.Правда, этим двигатели с медной стенкой обязаны не столько совершенствуконструкции, сколько жидкому водороду. Керосиновый двигатель дажетеоретически таким сделать невозможно. Однако медные сплавы позволили"выжать" из ракетного топлива до 98% его теоретической эффективности.

Драгоценныйметалл, известный человечеству с древности. Металл, без которого необойтись нигде. Как гвоздь, которого не оказалось в кузнице в известномстихотворении, он держит на себе все.

Именно он связывает медьсо сталью в жидкостном ракетном двигателе, и в этом, пожалуй,проявляется его мистическая сущность. Ни один из других конструкционныхматериалов не имеет никакого отношения к мистике – мистический шлейфвеками тянется исключительно за этим металлом. И так было в течениевсей истории его использования человеком, существенно более долгой, чему меди или железа. Что уж говорить об алюминии, который был открыттолько в девятнадцатом столетии, а стал относительно дешевым и тогопозже – в двадцатом.

За все годы человеческой цивилизации уэтого необыкновенного металла было огромное количество применений иразнообразных профессий. Ему приписывали множество уникальных свойств,люди использовали его не только в своей технической и научнойдеятельности, но и в магии. К примеру, долгое время считалось, что "егобоится всевозможная нечисть".

Главным недостатком этого металлабыла дороговизна, из-за чего его всегда приходилось расходоватьэкономно, точнее, разумно – так, как требовало очередное применение,которое ему придумывали неугомонные люди. Рано или поздно ему находилите или иные заменители, которые с течением времени с большим илименьшим успехом вытесняли его.

Сегодня, практически на нашихглазах, он исчезает из такой прекрасной сферы деятельности человека,как фотография, которая в течение почти полутора столетий делала нашужизнь более живописной, а летописи – более достоверными. А пятьдесят(или около того) лет назад он стал утрачивать позиции в одном издревнейших ремесел – чеканке монет. Конечно, монеты из этого металлавыпускают и сегодня – но исключительно для нашего с вами развлечения:они давно перестали быть собственно деньгами и превратились в товар –подарочный и коллекционный.

Возможно, когда физики изобретуттелепортацию и ракетные двигатели будут уже не нужны, наступитпоследний час и еще одной сферы его применения. Но пока что найти емуадекватную замену не удалось, и этот уникальный металл остается вракетостроении вне конкуренции – так же, как и в охоте на вампиров.

Выуже наверняка догадались, что все вышесказанное относится к серебру. Современ ГИРДа и до сих пор единственным способом соединения частейкамеры сгорания ракетных двигателей остается пайка серебряными припоямив вакуумной печи или в инертном газе. Попытки найти бессеребряныеприпои для этой цели ни к чему пока не привели. В отдельных узкихобластях эту задачку иногда удается решить – например, холодильникисейчас чинят с помощью медно-фосфорного припоя, – но в ЖРД заменысеребру нет. В камере сгорания большого ЖРД его содержание достигаетсотен граммов, а иногда доходит до килограмма.

Драгоценнымметаллом серебро называют скорее по многотысячелетней привычке, естьметаллы, которые не считаются драгоценными, но стоят намного дорожесеребра. Взять хотя бы бериллий. Этот металл втрое дороже серебра, но ион находит применение в космических аппаратах (правда, не в ракетах).Главным образом он получил известность благодаря способности замедлятьи отражать нейтроны в ядерных реакторах. В качестве конструкционногоматериала его стали использовать позже.

Конечно, невозможноперечислить все металлы, которые можно назвать гордым именем"крылатые", да и нет в этом нужды. Монополия металлов, существовавшая вначале 1950-х годов, давно уже нарушена стеклои углепластиками.Дороговизна этих материалов замедляет их распространение в одноразовыхракетах, а вот в самолетах они внедряются гораздо шире. Углепластиковыеобтекатели, прикрывающие полезную нагрузку, и углепластиковые сопладвигателей верхних ступеней уже существуют и постепенно начинаютсоставлять конкуренцию металлическим деталям.

Но с металлами,как известно из истории, люди работают уже приблизительно десять тысячлет, и не так-то просто найти равноценную замену этим материалам.

Титан и титановые сплавы

Самый модный металл космического века.

Вопрекишироко распространенному мнению, титан не очень широко применяется вракетной технике – из титановых сплавов в основном делают газовыебаллоны высокого давления (особенно для гелия). Титановые сплавыстановятся прочнее, если поместить их в баки с жидким кислородом илижидким водородом, в результате это позволяет снизить их массу. Накосмическом корабле ТКС, который, правда, так ни разу и не полетел скосмонавтами, привод стыковочных механизмов был пневматическим, воздухдля него хранился в нескольких 36-литровых шар-баллонах из титана срабочим давлением 330 атмосфер. Каждый такой баллон весил 19килограммов. Это почти впятеро легче, чем стандартный сварочный баллонтакой же вместимости, но рассчитанный на вдвое меньшее давление!

Палладий считается самым перспективным металлов из платиновой группы - он легче всего добывается и относительно дешево стоит, а из-за сходства характеристик им легко заменить саму платину. Большая часть добываемого палладия идет в электротехнику, химическую отрасль и ювелирное дело. В последнее время эксперты замечают дефицит палладия на рынке и сокращение запасов этого металла, он приобретает инвестиционную ценность, несмотря на то, что резкого взлета цен на палладий пока не прогнозируют.

Палладий был открыт английским химиком и аффинером Вильямом Волластоном, который растворил руду в «царской водке», а затем осадил выделившуюся платину хлоридом аммония. Путем экспериментов он пришел к тому, что в раствор добавил цианид ртути и получил цианид палладия, из которого при нагревании получился уже чистый палладий. Волластон обставил свое открытие с выдумкой - он анонимно отправил слиток палладия одному из лондонских торговцев, расписав его сходство с платиной. Торговец выставил слиток на продажу, чем привлек массу внимания дельцов и ученых. Вокруг нового металла было много споров - его рассматривали и анализировали, о нем спорили и обвиняли в подделке. Через какое-то время в крупнейшем научном журнале появилось объявление, что податель сего заплатит 20 фунтов стерлингов тому, кто создаст за год такой же металл. Ни одна попытка не увенчалась успехом, и в 1804 году Волластон доложил Королевскому обществу, что все это его рук дело. Помимо палладия он открыл еще и родий, но тот не был столь эффектен. Свое название новый металл получил в честь астероида Паллада, открытого за год до изобретения металла. В истории же палладием или палладиумом называли священную статую древнегреческой богини Афины Паллады. Теперь в научном мире есть знак отличия - «медаль Волластона», которая чеканится из чистого палладия.

В те времена платина была единственным известным минералом, содержащим палладий, сейчас же их открыто около 30. Очень редко он встречается в виде самородков, чаще в составе минералов вместе с платиной, свинцом, оловом, серой, теллуром и другими. Существуют также редкие соединения - палладистая платина (40%) и палладистое золото (примерно 10%). Палладий содержится не только в земных недрах, неспроста его называют космическим металлом - его находят в составе железных и каменных метеоритов.

Главные поставщики палладия на мировой рынок - Россия, ЮАР и Канада, а главные потребители - европейские страны, Япония и США. Самые богатые отечественные месторождения находятся на Урале и в Заполярье. Промышленным способом палладий у нас начали получать только в 1922 году, занимался этим Государственный аффинажный завод.

Палладий - самый легкий и легкоплавкий из всех платиноидов. Он хорошо поддается любым видам обработки - ковке, вытягиванию, свариванию, прокатке. Он инертен, стоек к агрессивным средам и при этом обладает отличными катализирующими свойствами и способен поглощать водород в огромных количествах (до 950 объемов). Благодаря этому качеству он незаменим в производстве каталитических конвертеров для автомобилей. Палладиевые катализаторы применяются так же при переработке нефти и для производства ракетного топлива, а палладиевые контакты не допускают искрения, поэтому активно используются в электротехнике, даже такой сложной как военная или аэрокосмическая. Устойчивость к химическому воздействию делает палладий незаменимым для производства химической и медицинской техники.

В ювелирной отрасли палладий используется для производства белого золота - он хорошо держит полировку и долго не тускнеет. Из него делают украшения и корпуса для дорогих часов. Для этой области применения используется как чистый палладий, так и сплавы, например, с серебром, медью и никелем. Самая высокая ювелирная проба палладия - 950-я.

Автомобилестроение забирает основную часть всего добываемого палладия, на электронную промышленность уходит примерно 15%, к ювелирам - 10%, остальное идет в химическую отрасль и медицину. Из автопрома возвращается и большая часть вторичного палладия - за счет сдачи и переработки автомобильных конвертеров. Вы можете продать автомобильный катализатор нашей компании, а мы отправим его в переработку, чтобы содержащийся в нем палладий снова вернулся на рынок драгметаллов.

Каждая отрасль техники по мере своего развития предъявляет все более разнообразные и высокие требования к металлам. Но наиболее ответственные требования предъявляются к металлам для спутников и космических кораблей - в них должны сочетаться лучшие механические, химические и физические свойства.

Трудно предугадать, как поведет себя в условиях космического пространства тот или иной материал. А точное знание этого чрезвычайно важно конструкторам космических кораблей. В свете последних космических достижений СССР и США особенно актуальными становятся проблемы космического металловедения. Ученых интересует поведение металлов и сплавов в космических условиях, волнует задача обеспечения металлическими материалами космической промышленности. А ведь требования к материалам для космических и реактивных аппаратов весьма разнообразны и высоки. Кроме температурной (высокие и сверхнизкие температуры) и термоциклической стойкости, тут требуется герметическая плотность в условиях абсолютного вакуума (10-16 ат), стойкость против вибрации, больших ускорений (в десятки тысяч раз больше ускорения силы тяжести), метеоритной бомбардировки, длительного воздействия плазмы, излучения, невесомости, теплостойкости и т. д.

Советские ученые Е. А. Духовской, В. С. Онищенко, А. Н. Пономарев, А. А. Силин, В. Л. Тальрозе обнаружили явление сверхнизкого трения твердых тел.

Исследователи обнаружили, что при облучении потоком ускоренных атомов гелия поверхности полимерного тела, например полиэтилена, трущегося в вакууме вместе с металлом, наблюдается переход от обычного трения к сверхнизкому. При этом коэффициент трения составляет тысячные доли. Во время эксперимента этот эффект сохранялся в широком диапазоне скоростей и больших удельных нагрузок. Использование этого явления открывает широкие перспективы для повышения долговечности и надежности машин и приборов, работающих в вакууме, открытом космическом пространстве.

В ходе космических исследований на Луне обнаружены месторождения ценных полезных ископаемых - железа, марганца, титана и других руд. При анализе лунного грунта обнаружены новые минералы и железо, которое не поддается окислению даже в земных условиях. Для космических рейсов - строительства стартовых площадок, ракет-носителей и самих космических кораблей - понадобится много металла.

Создание на Земле таких условий, как невесомость, глубокий вакуум, высокие и низкие температуры, потоки проникающей радиации, весьма трудно и дорого. С развитием общества возникает необходимость вынести в космос, например на орбиты спутников Земли, части технических комплексов.

Летчик-космонавт СССР Виктор Горбатко рассказал корреспондентам: "Применяя термин "производство в космосе", нельзя использовать земные масштабы. Это очевидно. Объем и вес выпускаемой продукции будет ограничен. Но уникальные особенности доставленной с орбитальной станции на Землю продукции с лихвой окупят затраты".

В качестве примера В. Горбатко приводит пенистые материалы. На Земле под тяжестью расплавленного металла газ выделяется из расплава. А в космосе в условиях невесомости можно получить пенистую сталь, легкую, как дерево, и прочную, как обычная сталь. Пенистая сталь очень нужна создателям будущих космических объектов.

Эксперимент "универсальная печь", проведенный в совместном полете "Союза" и "Аполлона", позволяет в известной мере оценить практические возможности создания внеземного производства. Разрабатываются проекты собираемых в космическом пространстве орбитальных станций-заводов.

Автор многих смелых проектов и идей докт. техн. наук профессор Г. И. Покровский полагает, что вполне возможно организовать в космосе относительно недорогое "доменное хозяйство". Сырьем для производства будет служить вся солнечная система с ее бесчисленными метеорами и мелкими астероидами. Энергию для небесных агрегатов будут накапливать солнечные батареи, а безупречный космический вакуум позволит применять самую современную технологию.

Сырье - пойманный метеор - удерживается захватом. Импульсный источник света, подключенный к солнечной батарее, возбуждает квантовый генератор. Луч этого лазера испаряет вещество метеорного тела. Высокотемпературная плазма увлекается электрическим полем и концентрируется в виде струи магнитной линзой. В магнитном спектрографе плазменный поток разлагается на струи ионов различных веществ. Затем нужный металл - железо, кобальт, никель - конденсируется, образуя постепенно растущий стержень. Полученные шлаки выбрасываются для перемещения и ориентации агрегата в пространстве.

Металлические стержни шлифуются, разрезаются и выбрасываются в космос с заданной скоростью. Их назначение - служить строительным материалом при создании орбитальных станций в околоземном пространстве нашей солнечной системы. Приварку стержня к свободно парящей ферме осуществит солнечная энергия.

Конечно, сейчас можно спорить о технологических деталях будущей космической металлургии, одно бесспорно - такая металлургия может существовать.

Многие из нас даже не задумываются о том, сколько интересных фактов мы не знаем о металлах. Сегодня очередная статья, которая расскажет о необычных свойствах металлов. Прежде всего, мы бы хотели рассказать вам об удивительном открытии, которое удалось сделать, благодаря полетам человека в космос.

Так вот, земная атмосфера содержит большое количество кислорода, с которым металл вступает в реакцию. На поверхности металла формируется, так называемая, оксидная пленка. Эта пленка защищает металлы от внешнего воздействия. Но если взять два куска металла в космосе и приложить их друг к другу, то они немедленно склеятся, сформировав монолитный кусок. Космонавты, как правило, используют инструмент, покрытый тонким слоем пластмассы. В космосе можно просто использовать уже окисленные металлы, взятые с Земли.

Железо во Вселенной

В почве земли самым распространенным металлом является алюминий, а вот если взять всю планету в целом, то лидерство захватит железо. Именно железо составляет основу земного ядря. В масштабах вселенной железо удерживает четвертую строчку по популярности.

Самым дорогим металлом в природе является Родий. Oн стоит примерно 175 тысяч долларов за грамм. А вот самый дорогой металл, полученный в лаборатории – калифорний 252. Грамм этого металла обойдется в 6,5 миллионов долларов. Естественно, реакторы для производства такого металла есть только в богатых странах – США и России. Сегодня на Земле такого металла не более 5 грамм.

Калифорний 252 нашел широкое применение в медицине для лечения раковых заболеваний. Кроме того, калифорний используется в промышленности для определения качества сварных швов. Калифорний может применяться при запуске реакторов, в геологии для обнаружения грунтовых вод.

Наверняка совсем скоро калифорний начнут применять и в космической промышленности.