Смысл векторного произведения. Векторное произведение векторов

Определение. Векторным произведением вектора а на вектор b называется вектор, обозначаемый символом [«, Ь] (или л х Ь), такой, что 1) длина вектора [а, b] равна (р, где у - угол между векторами а и b (рис.31); 2) вектор [а, Ь) перпендикулярен векторам а и Ь,т.е. перпендикулярен плоскости этих векторов; 3) вектор [а, Ь] направлен так, что из конца этого вектора кратчайший поворот от а к b виден происходящим против часовой стрелки (рис. 32). Рис. 32 Рис.31 Иными словами, векторы a, b и [а,Ь) образуют правую тройку векторов, т.е. расположены так, как большой, указательный и средний пальцы правой руки. В случае, если векторы а и b коллинеарны, будем считать, что [а, Ь] = 0. По определению длина векторного произведения численно равна площади Sa параллелограмма (рис. 33), построенного на перемножаемых векторах а и b как на сторонах: 6.1. Свойства векторного произведения 1. Векторное произведение равно нулевому вектору тогда и толькотогда, когда по крайней мере один из перемножаемых векторов является нулевым или когда эти векторы коллинеарны (если векторы а и b коллинеарны, то угол между ними равен либо 0, либо 7г). Это легко получить из того, что Если считать нулевой вектор коллинсарным любому вектору, то условие коллинеарности векторов а и b можно выразить так 2. Векторное произведение антикоммутативно, т. е. всегда. В самом деле, векторы (а, Ь) и имеют одинаковую длину и коллинеарны. Направления же этих векторов противоположны, так как из конца вектора [а, Ь] кратчайший поворот от а к b будет виден происходящим против часовой стрелки, а из конца вектора [Ь, а] - по часовой стрелке (рис. 34). 3. Векторное произведение обладает распределительным свойством по отношению к сложению 4. Числовой множитель Л можно выносить за знак векторного произведения 6.2. Векторное произведение векторов, заданных координатами Пусть векторы а и Ь заданы своими координатами в базисе. Пользуясь распределительным свойством векторного произведения, находим Векторное произведение векторов заданных координатами. Смешанное произведение. Выпишем векторные произведения координатных ортов (рис. 35): Поэтому для векторного произведения векторов а и b получаем из формулы (3) следующее выражение Формулу (4) можно записать в символической, легко запоминающейся форме, если воспользоваться определителем 3-го порядка: Разлагая этот определитель по элементам 1-й строки, получим (4). Примеры. 1. Найти площадь параллелограмма, построенного на векторах Искомая площадь Поэтому находим = откуда 2. Найти площадь треугольника (рис. 36). Ясно, что площадь б"д треугольника ОАО равна половине площади S параллелограмма О АС В. Вычисляя векторное произведение (а, Ь| векторов а = OA и b = оЪ, получаем Отсюда Замечание. Векторное произведение не ассоциативно, т.е. равенство ((а, Ь),с) = [а, |Ь,с)) в обшем случае неверно. Например, при а = ss j имеем § 7. Смешанное произведение векторов Пусть имеем три вектора а, Ь и с. Перемножим векторы а и 1> вскторно. В результате получим вектор [а, 1>]. Умножим его скалярно на вектор с: (к Ь), с). Число ([а, Ь], е) называется смешанным произведением векторов а, Ь. с и обозначается символом (а, 1), е). 7.1. Геометрический смысл смешанного произведения Отложим векторы а, b и с отобшей точки О (рис. 37). Если все четыре точки О, А, В, С лежат в одной плоскости (векторы a, b и с называются в этом случае компланарными), то смешанное произведение ([а, Ь], с) = 0. Это следует из того, что вектор [а, Ь| перпендикулярен плоскости, в которой лежат векторы а и 1», а значит, и вектору с. / Если же точки О, А, В, С не лежат в одной плос-кости (векторы a, b и с некомпланарны), построим на ребрах OA, OB и ОС параллелепипед (рис. 38 а). По определению векторного произведения имеем (a,b) = So с, где So - площадь параллелограмма OADB, а с - единичный вектор, перпендикулярный векторам а и Ь и такой, что тройка а, Ь, с - правая, т.е. векторы a, b и с расположены соответственно как большой, указательный и средний пальцы правой руки (рис. 38 б). Умножая обе части последнего равенства справа скалярно на вектор с, получаем, что Векторное произведение векторов заданных координатами. Смешанное произведение. Число ргс с равно высоте h построенного параллелепипеда, взятого со знаком «+», если угол между векторами с и с острый (тройка а, Ь, с - правая), и со знаком «-», если угол - тупой (тройка а, Ь, с - левая), так что Тем самым, смешанное произведение векторов а, Ь и с равно объему V параллелепипеда, построенного на этих векторах как на ребрах, если тройка а, Ъ, с - правая, и -V, если тройка а, Ь, с - левая. Исходя из геометрического смысла смешанного произведения, можно заключить, что, перемножая тс же векторы a, b и с в любом другом порядке, мы всегда будем получать либо +7, либо -К. Знак произ- Рис. 38 ведения будет зависеть лишь оттого, какую тройку образуют перемножаемые векторы - правую или левую. Если векторы а, Ь, с образуют правую тройку, то правыми будут также тройки Ь, с, а и с, а, Ь. В то же время все три тройки Ь, а, с; а, с, Ь и с, Ь, а - левые. Тем самым, (а,Ь, с) = (Ь,с, а) = (с,а,Ь) = -(Ь,а,с) = -(а,с,Ь) = -(с,Ь,а). Ешераз подчеркнем, что смешанное произведение векторов равно нулютогдаи только тогда, когда перемножаемые векторы а, Ь, с компланарны: {а, Ь, с компланарны} 7.2. Смешанное произведение в координатах Пусть векторы а, Ь, с заданы своими координатами в базисе i, j, k: а = {x\,y\,z]}, b= {x2,y2>z2}, c = {х3,уз,23}. Найдем выражение для их смешанного произведения (а, Ь, с). Имеем смешанное произведение векторов, заданныхсвоими координатами в базисе i, J, к, равно определителю третьего порядка, строки которого составлены соответственно из координат первого, второго и третьего из перемножаемых векторов. Необходимое и достаточное условие компланарности векторов а у\, Z|}, b = {хъ У2. 22}, с = {жз, уз, 23} запишется в следующем виде У| z, аг2 у2 -2 =0. Уз Пример. Проверить, компланарны ли векторы „ = {7,4,6}, Ь = {2, 1,1}, с = {19, II, 17}. Рассматриваемые векторы будут компланарны или некомпланарны в зависимости от того, будет равен нулю или нет определитель Разлагая его по элементам первой строки, получим Д = 7- 6- 4- 15 + 6-3 = 0^- векторы n, Ь, с компланарны. 7.3. Двойное векторное произведение Двойное векторное произведение [а, [Ь, с]] представляет собой вектор, перпендикулярный к векторам а и [Ь, с]. Поэтому он лежит в плоскости векторов b и с и может быть разложен по этим векторам. Можно показать, что справедлива формула [а, [!>, с]] = Ь(а, е) - с(а, Ъ). Упражнения 1. Три вектора АВ = с, Ж? = о и СА = b служат сторонами треугольника. Выразить через a, b и с векторы, совпадающие с медианами AM, DN, CP треугольника. 2. Каким условием должны быть связаны векторы р и q, чтобы вектор р + q делил угол между ними пополам? Предполагается, что все три вектора отнесены к общему началу. 3. Вычислите длину диагоналей параллелограмма, построенного на векторах а = 5р + 2q и b = р - 3q, если известно, что |р| = 2v/2, |q| = 3 H-(p7ci) = f. 4. Обозначив через а и b стороны ромба, выходящие из общей вершины, докажите, что диагонали ромба взаимно перпендикулярны. 5. Вычислите скалярное произведение векторов а = 4i + 7j + 3k и b = 31 - 5j + k. 6. Найдите единичный вектор а0, параллельный вектору а = {6, 7, -6}. 7. Найдите проекцию вектора a = l+ j- kHa вектор b = 21 - j - 3k. 8. Найдите косинус угла между векторами IS «ж,если А(-4,0,4), В(-1,6,7), С(1,10.9). 9. Найдите единичный вектор р°, одновременно перпендикулярный вектору а = {3, 6, 8} и оси Ох. 10. Вычислите синус угла между диагоналями параллелофамма, построенного на векторах a = 2i+J-k, b=i-3j + k как на сторонах. Вычислите высоту h параллелепипеда, построенного на векторах а = 31 + 2j - 5k, b = i- j + 4knc = i-3j + к, если за основание взят параллелограмм, построенный на векторах а и I). Ответы

Векторное произведение - это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов - модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Определить векторное произведение можно по-разному, и теоретически, в пространстве любой размерности n можно вычислить произведение n-1 векторов, получив при этом единственный вектор, перпендикулярный к ним всем. Но если произведение ограничить нетривиальными бинарными произведениями с векторным результатами, то традиционное векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности».

Определение:
Векторным произведением вектора a на вектор b в пространстве R 3 называется вектор c , удовлетворяющий следующим требованиям:
длина вектора c равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|a||b|sin φ;
вектор c ортогонален каждому из векторов a и b;
вектор c направлен так, что тройка векторов abc является правой;
в случае пространства R7 требуется ассоциативность тройки векторов a,b,c.
Обозначение:
c===a × b


Рис. 1. Площадь параллелограмма равна модулю векторного произведения

Геометрические свойства векторного произведения :
Необходимым и достаточным условием коллинеарности двух ненулевых векторов является равенство нулю их векторного произведения.

Модуль векторного произведения равняется площади S параллелограмма, построенного на приведённых к общему началу векторах a и b (см. рис.1).

Если e - единичный вектор, ортогональный векторам a и b и выбранный так, что тройка a,b,e - правая, а S - площадь параллелограмма, построенного на них (приведённых к общему началу), то для векторного произведения справедлива формула:
=S e


Рис.2. Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на a × b и вектора a на b × c, первым шагом является нахождение скалярных произведений

Если c - какой-нибудь вектор, π - любая плоскость, содержащая этот вектор, e - единичный вектор, лежащий в плоскости π и ортогональный к c,g - единичный вектор, ортогональный к плоскости π и направленный так, что тройка векторов ecg является правой, то для любого лежащего в плоскости π вектора a справедлива формула:
=Pr e a |c|g
где Pr e a проекция вектора e на a
|c|-модуль вектора с

При использовании векторного и скалярного произведений можно высчитать объём параллелепипеда, построенного на приведённых к общему началу векторах a, b и c . Такое произведение трех векторов называется смешанным.
V=|a (b×c)|
На рисунке показано, что этот объём может быть найден двумя способами: геометрический результат сохраняется даже при замене «скалярного» и «векторного» произведений местами:
V=a×b c=a b×c

Величина векторного произведения зависит от синуса угла между изначальными векторами, поэтому векторное произведение может восприниматься как степень «перпендикулярности» векторов также, как и скалярное произведение может рассматриваться как степень «параллельности». Векторное произведение двух единичных векторов равно 1 (единичному вектору), если изначальные векторы перпендикулярны, и равно 0 (нулевому вектору), если векторы параллельны либо антипараллельны.

Выражение для векторного произведения в декартовых координатах
Если два вектора a и b определены своими прямоугольными декартовыми координатами, а говоря точнее - представлены в ортонормированном базисе
a=(a x ,a y ,a z)
b=(b x ,b y ,b z)
а система координат правая, то их векторное произведение имеет вид
=(a y b z -a z b y ,a z b x -a x b z ,a x b y -a y b x)
Для запоминания этой формулы:
i =∑ε ijk a j b k
где ε ijk - символ Леви-Чивиты.

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.

Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку "Вычислить."

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Векторное произведение векторов

Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов .

Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.

Запись cba - означает - первым является вектор c , вторым является вектор b и третьим является вектор a .

Определение 2. Тройка некомпланарных векторов abc называется правой (левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.

Определение 2 можно формулировать и по другому.

Определение 2". Тройка некомпланарных векторов abc называется правой (левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b , откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).

Тройка векторов abc , изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.

Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.

Определение 3. Декартовая или афинная система координат называется правой (левой ), если три базисных вектора образуют правую (левую) тройку.

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Определение 4. Векторным произведением вектора a на вектор b называется вектор с , обозначаемый символом c= [ab ] (или c= [a,b ], или c=a×b ) и удовлетворяющий следующим трем требованиям:

  • длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
  • |c |=|[ab ]|=|a ||b |sinφ ; (1)
  • вектор с ортогонален к каждому из векторов a и b ;
  • вектор c направлен так, что тройка abc является правой.

Векторное произведение векторов обладает следующими свойствами:

  • [ab ]=−[ba ] (антиперестановочность сомножителей);
  • [(λa )b ]=λ [ab ] (сочетательность относительно числового множителя);
  • [(a+b )c ]=[a c ]+[b c ] (распределительность относительно суммы векторов);
  • [aa ]=0 для любого вектора a .

Геометрические свойства векторного произведения векторов

Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.

Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ =sin180 =sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.

Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab ]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).

Если же оба вектора a и b ненулевые, то |a |>0, |b |>0. Тогда из [ab ]=0 и из (1) вытекает, что sinφ =0. Следовательно векторы a и b коллинеарны.

Теорема доказана.

Теорема 2. Длина (модуль) векторного произведения [ab ] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b .

Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:

Тогда векторное произведение этих векторов имеет вид:

Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k , которое эквивалентно формуле (3).

Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i ={1, 0, 0}, j ={0, 1, 0}, k ={0, 0, 1}). Тогда имеем:

Из последнего равенства и соотношений (4), получим:

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b .

СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ТРЕХ ВЕКТОРОВ И ЕГО СВОЙСТВА

Смешанным произведением трёх векторов называют число, равное . Обозначается . Здесь первые два вектора умножаются векторно и затем полученный вектор умножается скалярно на третий вектор . Очевидно, такое произведение есть некоторое число.

Рассмотрим свойства смешанного произведения.

  1. Геометрический смысл смешанного произведения. Смешанное произведение 3-х векторов с точностью до знака равно объёму параллелепипеда, построенного на этих векторах, как на рёбрах, т.е. .

    Таким образом, и .

    Доказательство . Отложим векторы от общего начала и построим на них параллелепипед. Обозначим и заметим, что . По определению скалярного произведения

    Предполагая, что и обозначив через h высоту параллелепипеда, находим .

    Таким образом, при

    Если же , то и . Следовательно, .

    Объединяя оба эти случая, получаем или .

    Из доказательства этого свойства в частности следует, что если тройка векторов правая, то смешанное произведение , а если – левая, то .

  2. Для любых векторов , , справедливо равенство

    Доказательство этого свойства следует из свойства 1. Действительно, легко показать, что и . Причём знаки "+" и "–" берутся одновременно, т.к. углы между векторами и и и одновременно острые или тупые.

  3. При перестановке любых двух сомножителей смешанное произведение меняет знак.

    Действительно, если рассмотрим смешанное произведение , то, например, или

  4. Смешанное произведение тогда и только тогда, когда один из сомножителей равен нулю или векторы – компланарны.

    Доказательство .

    Т.о., необходимым и достаточным условием компланарности 3-х векторов является равенство нулю их смешанного произведения. Кроме того, отсюда следует, что три вектора образуют базис в пространстве, если .

    Если векторы заданы в координатной форме , то можно показать, что их смешанное произведение находится по формуле:

    .

    Т. о., смешанное произведение равно определителю третьего порядка, у которого в первой строке стоят координаты первого вектора, во второй строке – координаты второго вектора и в третьей строке – третьего вектора.

    Примеры.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

Уравнение F(x, y, z) = 0 определяет в пространстве Oxyz некоторую поверхность, т.е. геометрическое место точек, координаты которых x, y, z удовлетворяют этому уравнению. Это уравнение называется уравнением поверхности, а x, y, z – текущими координатами.

Однако, часто поверхность задаётся не уравнением, а как множество точек пространства, обладающих тем или иным свойством. В этом случае требуется найти уравнение поверхности, исходя из её геометрических свойств.


ПЛОСКОСТЬ.

НОРМАЛЬНЫЙ ВЕКТОР ПЛОСКОСТИ.

УРАВНЕНИЕ ПЛОСКОСТИ, ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ

Рассмотрим в пространстве произвольную плоскостьσ. Её положение определяется заданием вектора , перпендикулярного этой плоскости, и некоторой фиксированной точки M 0 (x 0 , y 0 , z 0 ), лежащей в плоскости σ.

Вектор перпендикулярный плоскости σ, называется нормальным вектором этой плоскости. Пусть вектор имеет координаты .

Выведем уравнение плоскости σ, проходящей через данную точку M 0 и имеющей нормальный вектор . Для этого возьмём на плоскости σ произвольную точку M(x, y, z) и рассмотрим вектор .

Для любой точки M Î σ вектор .Поэтому их скалярное произведение равно нулю . Это равенство – условие того, что точка M Î σ. Оно справедливо для всех точек этой плоскости и нарушается, как только точка M окажется вне плоскости σ.

Если обозначить через радиус-вектор точки M , – радиус-вектор точкиM 0 , то и уравнение можно записать в виде

Это уравнение называется векторным уравнением плоскости. Запишем его в координатной форме. Так как , то

Итак, мы получили уравнение плоскости, проходящей через данную точку. Таким образом, для того чтобы составить уравнение плоскости, нужно знать координаты нормального вектора и координаты некоторой точки, лежащей на плоскости.

Заметим, что уравнение плоскости является уравнением 1-ой степени относительно текущих координат x, y и z .

Примеры.

ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ

Можно показать, что любое уравнение первой степени относительно декартовых координат x, y, z представляет собой уравнение некоторой плоскости. Это уравнение записывается в виде:

Ax+By+Cz+D =0

и называется общим уравнением плоскости, причём координаты A, B, C здесь являются координатами нормального вектора плоскости.

Рассмотрим частные случаи общего уравнения. Выясним, как располагается плоскость относительно системы координат, если один или несколько коэффициентов уравнения обращаются в ноль.

A – это длина отрезка, отсекаемого плоскостью на оси Ox . Аналогично, можно показать, что b и c – длины отрезков, отсекаемых рассматриваемой плоскостью на осях Oy и Oz .

Уравнением плоскости в отрезках удобно пользоваться для построения плоскостей.