Первичные и вторичные инициирующие взрывчатые вещества. Инициирующие ВВ (первичные и вторичные),их свойства

Инициирующие (первичные) ВВ легко взрываются в форме детонации при незначительных тепловых и механических воздействиях и способные вызвать детонацию бризантных (вторичных) ВВ. К ним относятся:

Гремучая ртуть – чувствительна к лучу огня и даже к слабым механическом воздействиям (удар, накол, трение), ядовита. Во влажном состоянии теряет взрывчатые свойства: при 10% влажности горит не детонируя. Используют в детонаторах лучевого и накольного действия.

Азид свинца – менее чувствителен механическим воздействиям и лучу огня, чем гремучая ртуть. При увлажнении не теряет чувствительности к механическим воздействиям. Инициирующая способность ниже, чем у гремучей ртути. Используют в различных детонаторах.

Тринитрорезерцинат свинца (ТНРС) – чувствителен к пламени; При воспламенении дает мощный луч огня. Чувствительность к удару и инициирующая способность ниже, чем у азида свинца. Мало гигроскопичен. Используют для повышения воспламеняемости инициирующих составов.

Гидроударная волна, методы ослабления её параметров. Опасная зона и безопасные расстояния по разлету кусков и обломков разрушаемого материала при взрывах.

Ударная волна (УВ) – волна сжатия, распространяющаяся по среде со сверхзвуковой скоростью, на переднем фронте которой мгновенно (скачкообразно) изменяется давление, плотность и температура среды.

Взрыв в скважине.

При взрыве заряда в скважине, заполненной жидкой средой, ударная волна образует пузырь из разогретых и сжатых до высокого давления продуктов детонации. Благодаря инертности жидкости газовый пузырь пульсирует, излучая при каждом цикле волны, интенсивность которых постепенно убывает. Практическое значение имеют только основная и вторичная ударные волны.

Поскольку плотность воды почти в 800 раз превышает плотность воздуха, интенсивность УВ в воде много больше, чем в воздухе. Этим частично объясняется различное воздействие на элементы скважины зарядов кумулятивных корпусных и бескорпусных перфораторов. Гидростатическое давление влияет на энергию УВ. При давлении 150 МПа энергия УВ приблизительно на 25% меньше, чем при давлении 0,1 МПа, а разрушительное действие вторичной УВ практически прекращается.

УВ в жидкости распространяются на большие расстояния. В трубах, являющимися волноводами, интенсивность УВ снижается медленно. В не обсаженных скважинах, из-за неровностей стенок скважины волны затухают быстрее. Это необходимо учитывать при решении вопроса о допустимой мощности взрыва, исходя из условия прочности элементов скважины на определённых расстояниях от места взрыва.



Безопасное расстояние ударной волны: r=k*(Q)^1/3;

k-коэфф пропорциональности, зависит от степени повреждения к-ю мы можем допустить – крепости сдания, его важности – сарай или Белый Дом.

Q-масса ВВ в тратиловом эквиваленте.

Формула разлета:

Rраз=1250*n*(f*d/a*(1+N))

n-коэфф заполнения скважины;

N-для забойки; забойка – вставл в скважину,чтобы энергия не уходила в воздух.

d-диаметр скважины;

a-расстояние м/у скважинами при массовых взрывах.

f-коэфф породы по шкале прочности.

Применение инициирующих ВВ:

Инициирующие ВВ применяются для возбуждения в других ВВ взрывчатого превращения в виде горения или детонации. Поэтому их используют для снаряжения средств инициирования : капсюлей-детонаторов, капсюлей-воспламенителей и др.

3.Подготовка скважины к перфорации. Акт готовности скважины к проведению перфорации. Порядок подготовки перфораторов на поверхности и присоединение к кабелю. Спуско-подъемные операции.

Руководитель ВР и начальник партии должны подписать акт в соответствии с тех проектом о подготовки скважины к перфорации.

Скважина должна быть прошаблонирована, залита необходимым раствором(чистая вода, киросин – при депрессии, при репрессии залив утяжеленный раствор). Д/ны быть проезд, очищенные мостки, площадки для подъемника и ЛПСки, место для подключения к электросети, заземление, 75 люкс на устье и 50 люкс на мостках, на всей опасной зоне 25 люкс

Должно быть указано в акте: Конструкция скважины, цементаж, проведенные работы.

Должны быть предусмотрены места заземления и присоединения к электроэнергии, площадка для установки ЛПС.

Заряжание перфораторов должно проводиться в ЛПС или на спец столах с бортиками.

Столы должны быть заземлены, располагаться на расстоянии 20 м от скважины.



Корпусные перфораторы: прочищаются, осматриваются в ЛПС. Допускается их раздутость 5-6 мм.

Бескорпусные перфораторы: заряжаются и осматриваются на столах.

Перфораторы на трубах: собираются и спускаются секциями, прикручиваются друг к другу.

Скважина должна быть прошаблонирована и залита жидкостью, которую применяют при ПВР.

Спуск - подъемные операции.

Верхний подвесной блок для строго вертикального опускания кабеля с перфоратором.

Погрузка и выгрузка ВМ.

1. Погрузка и разгрузка транспортных средств с ВМ должны выполняться с максимальной осторожностью в специально отведенных и оборудованных местах.

Перевозимый груз должен быть уложен таким образом, чтобы исключить падение, соударение упаковок с ВМ и удары их о борта кузова транспортного средства.

2. Загрузка транспортного средства ВМ должна осуществляться согласно схемам размещения и крепления груза, содержащимся в нормативно - технической документации, утвержденной уполномоченным на это руководителем соответствующей службы предприятия, осуществляющего перевозку. При этом груз должен быть расположен симметрично относительно продольной оси кузова и равномерно (по массе) по всей площади. Работы должны выполняться под непосредственным руководством и контролем ответственного за погрузку лица, назначенного приказом.

3. До сдачи груза к отправлению, а также в процессе погрузки ВМ должны быть тщательно осмотрены грузоотправителем с целью проверки правильности упаковки, качества тары, целостности пломб и печатей, соответствия указанных на грузе и в перевозочных документах данных, которые требуются нормативно - технической документацией на ВМ, в том числе маркировки и массы груза.

4. Порядок погрузки, перегрузки и выгрузки ВМ должен исключать возможность столкновения рабочих, выполняющих работы, или задевания их грузом.

5. При раздельной перевозке ВМ загрузка специальных и специализированных автомобилей (см. раздел 6) допускается до полной грузоподъемности, за исключением детонаторов, загрузка которых во всех случаях разрешается не более чем на две трети грузоподъемности и не более двух ящиков по высоте.

Полная грузоподъемность специально оборудованного автомобиля определяется как разность между полной грузоподъемностью серийного автомобиля и массой дополнительного оборудования, установленного на автомобиль.

При совместной перевозке ВВ и СИ или СИ и ПВА загрузка автомобиля также не должна превышать 2/3 его грузоподъемности.

Ящики с ВМ должны укладываться плашмя, плотно друг к другу, мешки - клетью или вертикально, но не выше уровня бортов, и покрываться специально предназначенной для этого тканью.

В случае перевозки ВМ в допущенных для этих целей специальных контейнерах последние могут выступать над уровнем бортов автомобиля.

Разрешается перевозка ВМ без упаковки со складов до мест взрывания в зарядных машинах, допущенных для этих целей Госгортехнадзором России.

6. Транспортные средства, предназначенные для перевозки ВМ, должны подаваться к местам погрузки (разгрузки) по одному в соответствии с требованиями инструкции по проведению погрузочно - разгрузочных работ, утвержденной руководителем предприятия. Ожидающие погрузку и загруженные автомобили должны находиться от мест погрузки (разгрузки) на расстоянии не менее 100 м и размещаться в разных местах. Груженые автомобили не должны задерживаться возле производственных зданий.

7. На время погрузочно - разгрузочных работ двигатель автомобиля, кроме зарядных машин в период заряжания скважин, должен быть выключен, автомобиль заторможен ручным тормозом, под колеса установлено не менее 2 противооткатных упоров, а водитель обязан покинуть кабину.

8. При перевозке ВМ, подлежащих частичной разгрузке или загрузке в пути следования, каждая партия взрывчатых материалов должна быть укреплена отдельно.

10. Запрещается курить ближе 50 м от ВМ, предназначенных для погрузки - разгрузки, а также во время проведения погрузочно - разгрузочных работ с ними.

Взрывчатые вещества по характеру своего действия делятся на следующие группы.

· Инициирующие взрывчатые вещества.

· Бризантные (или дробящие) взрывчатые вещества.

· Пороха.

· Пиротехнические составы.

Инициирующими называются такие взрывчатые вещества, которые обладают весьма высокой чувствительностью и взрываются от незначительного внешнего механического (удар, трение) или теплового (луч лазера, пламя, нагрев, электрический ток) воздействия. Эти вещества всегда детонируют и вызывают детонацию других взрывчатых веществ. Инициирующие взрывчатые вещества применяются в небольших количествах для снаряжения капсюлей, создающих первоначальный импульс взрыва.

Бризантными называются такие взрывчатые вещества, которые при взрыве производят дробление окружающих предметов. Они значительно менее чувствительны к внешним воздействиям, чем инициирующие взрывчатые вещества, и детонируют обычно под воздействием взрыва другого взрывчатого вещества – детонатора. Детонатор представляет собой заряд взрывчатого вещества более чувствительного, чем взрывчатое вещество основного заряда. Взрыв детонатора осуществляется взрывом капсюля с инициирующим взрывчатым веществом (рис. 3.1). Сначала от механического или теплового воздействия взрывается капсюль. Образующаяся ударная волна вызывает взрыв детонатора, который, взрываясь, вызывает детонацию основного заряда. Бризантные взрывчатые вещества применяются в качестве разрывных зарядов для снаряжения мин, снарядов, подрывных патронов и служат для разрушения и дробления различных предметов и преград.

Рис. 3.1. Схема детонации бризантного взрывчатого вещества:

1 – капсюль (инициирующее взрывчатое вещество); 2 – детонатор;

3 – основной заряд бризантного взрывчатого вещества

Порохами называются такие взрывчатые вещества, характер взрыва которых позволяет использовать их в качестве источника энергии движения снарядов, мин, пуль и реактивных снарядов. Основным видом взрывчатого превращения порохов в обычных условиях является быстрее сгорание. Пороха к внешним механическим воздействиям не чувствительны. Разница в действии пороха и бризантного взрывчатого вещества можно пояснить простым примером, показанным на рис. 3.2. При быстром горении пороха (рис. 3.2, а) давление газа нарастает постепенно, снаряд движется с ускорением, врезаясь в нарезные каналы (которые служат для придания снаряду вращательного движения с целью стабилизации его траектории). При детонации (рис. 3.2, б) бризантного взрывчатого вещества при этих же условиях, газообразование происходит почти мгновенно, и образующиеся газы разрушают ствол и камеру.

Рис. 3.2. Схема действия взрывчатого вещества на снаряд при горении:

А – пороха; б – бризантного взрывчатого вещества

Пиротехнические составы представляют собой смеси из взрывчатых и невзрывчатых веществ. Взрывчатые свойства у них выражены значительно слабее, чем у обычных взрывчатых веществ. Пиротехническим составам присущи специальные свойства (яркое свечение, дымообразование, окраска пламени). Они применяются в осветительных и зажигательных патронах, в салютах и фейерверках, в дымовых шашках и т.д. Рассмотрим более подробно основные типы взрывчатых веществ.

Инициирующие взрывчатые вещества

В качестве инициирующих взрывчатых веществ наибольшее применение имеют гремучая ртуть, азид свинца и стифнат свинца.

Гремучая ртуть – фульминат ртути, представляет собой мелкокристаллический белый или серый порошок. Получается в результате действия этилового спирта на раствор ртути в азотной кислоте. Непрессованная гремучая ртуть чрезвычайно опасна в обращении, поскольку очень чувствительна. В спрессованном виде это вещество менее опасно и менее чувствительно к начальному возбуждению. Под влиянием влаги гремучая ртуть легко теряет свои взрывчатые свойства. При 5% влаги взрывчатые свойства понижаются, при 10% – она только сгорает, при 30% – превращается в инертное вещество.

Азид свинца – свинцовая соль азотистоводородной кислоты, представляет собой белый порошок. Обладает меньшей чувствительностью, чем гремучая ртуть, однако обладает инициирующей способностью в 10 раз большей, чем гремучая ртуть. Не гигроскопичен и в воде не растворяется. Применяется в алюминиевых оболочках, так как с алюминием не реагирует. При взаимодействии с медью образует азид меди – очень чувствительное взрывчатое вещество.

Стифнат свинца (ТНРС) – свинцовая соль стифниновой кислоты. ТНРС представляет собой твердое мелкокристаллическое вещество желтого цвета. Не гигроскопичен, не растворяется в воде и не взаимодействует с металлами. Чувствительность к удару ниже, чем у азида свинца, а к пламени – выше. Весьма чувствителен к электрическим разрядам. Инициирующая способность его ниже, чем у других инициирующих взрывчатых веществ.

Инициирующие взрывчатые вещества в смесях с другими веществами образуют ударные составы, которые применяются для снаряжения капсюлей-воспламенителей и капсюлей-детонаторов. Рецептуры некоторых ударных составов приведены в табл. 3.2.

Гремучая ртуть в ударных составах дает первоначальную вспышку, антимоний является горючим и служит для усиления форса пламени, бертолетова соль – окислитель, поддерживающий горение. Капсюли-воспламенители делятся на патронные и трубочные.

Патронные капсюли-воспламенители применяются в патронах и капсюльных втулках стрелкового оружия и артиллерийских снарядах. Они воспламеняются от удара бойка и дают начальный импульс для воспламенения боевого заряда. Схема патронного капсюля-воспламенителя приведена на рис. 3.3.

Таблица 3.2

Рецептуры ударных составов для винтовочных и пистолетных

капсюльных воспламенителей

Капсюль-воспламенитель

Гремучая ртуть, масс.%

Бертолетова соль, масс.%

Антимоний, масс.%

Масса, г.

Пистолетный

0.02

Винтовочный

0.03

Капсюльная втулка

0.025

Рис. 3.3. Схема патронного капсюля-воспламенителя

Он состоит из металлической оболочки (колпачка) 1, выполненной из латуни или меди, в которую запрессован ударный состав 2. Сверху ударный состав закрывается фольговым или бумажным кружком 3. Трубочные капсюли-воспламенители применяются в трубках и взрывателях и служат для инициирования детонации капсюля-детонатора.

Схема трубочного капсюля-воспламенителя приведена на рис. 3.4.

Рис. 3.4. Схема трубочного капсюля-воспламенителя:

1 – колпачок с отверстием; 2 – ударный состав;

3 – фольговая чашечка; 4 – фольговая диафрагма

Для снаряжения трубочных капсюлей-воспламенителей используется тот же ударный состав, что и для патронных капсюлей-воспламенителей, но его масса в (5 ÷ 10) раз больше и составляет (0.08÷0.2) г.

Капсюли-детонаторы делятся на артиллерийские и подрывные. Артиллерийские капсюли-детонаторы применяют во взрывателях различных снарядов, мин, авиабомб и ручных грант. Назначение капсюля-детонатора – вызвать детонацию детонатора разрывного заряда бризантного взрывчатого вещества, которым снаряжен заряд.

По характеру начального импульса, возбуждающего взрыв, капсюли-детонаторы могут быть следующих типов.

· Накольные, действуют от накола жалом.

· Лучевые, действуют от луча (форса) огня капсюля-воспламенителя.

· Подрывные капсюли-детонаторы предназначены для возбуждения детонации подрывных зарядов. Они действуют от форса огня (бикфордов шнур) или от электрозапала. Схема подрывного капсюля-детонатора приведена на рис. 3.5.

Рис. 3.5. Схема подрывного капсюля-детонатора:

1-гильза; 2-стифнат свинца; 3-азид свинца; 4-тетрил

Бризантные взрывчатые вещества

Бризантные взрывчатые вещества применяются для снаряжения артиллерийских снарядов, мин, ручных гранат, авиабомб, а также для приготовления подрывных средств. Основные бризантные взрывчатые вещества, используемые в настоящее время – пироксилин, нитроглицерин, тротил, меланит, гексоген, динамит, а также различные смеси и сплавы.

Пироксилин (нитроклетчатка) – твердое вещество волокнистого строения. Получается обработкой растительной клетчатки (хлопок, лен, древесина) смесью азотной и серной кислоты – нитрацией или нитрованием клетчатки. В зависимости от степени нитрации, содержание азота в пироксилине может быть различным. Чем больше содержание азота, тем выше взрывчатые свойства пироксилина. Пироксилин весьма гигроскопичен. При содержании влаги до 3% пироксилин называют сухим, при содержании влаги более 3% – влажным. Сухой пироксилин очень опасен – взрывается от удара и трения. При содержании влаги более 25% – он малочувствителен и безопасен в обращении и хранении. Пироксилин применяется для изготовления бездымного пороха и для подрывных работ. Для снаряжения боеприпасов – применяется пироксилин №1 (13% азота), пироксилин №2 (12% азота).

Нитроглицерин – ядовитая прозрачная маслянистая жидкость. Получается обработкой глицерина азотной и серной кислотой. Очень чувствителен к ударам, трению, сотрясению. В чистом виде не применяется. Используется при изготовлении бездымных порохов в качестве растворителя и для приготовления динамита в подрывных работах.

Тротил (тринитротолуол, тол, ТНТ) – это твердое мелкокристаллическое вещество темно-желтого цвета. Получается обработкой толуола (продукта сухой перегонки каменного угля) азотной и серной кислотой. Тротил нечувствителен к ударам и нагреванию, безопасен в обращении и обладает высокой стойкостью при хранении (толовые шашки сохраняют способность взрываться даже через десятки лет хранения). На открытом воздухе горит коптящим пламенем без взрыва. Тротил – наиболее распространенное взрывчатое вещество. Применяется для снаряжения снарядов, мин, бомб и в подрывных работах.

Мелинит (пикриновая кислота) – плотная кристаллическая масса желто-лимонного цвета. Получается из карболовой кислоты путем обработки ее азотной и серной кислотами. Это более сильное взрывчатое вещество, чем тротил. Недостаток – способность образовывать в местах стыка с металлическими оболочками химические соединения (соли) – пикраты, очень чувствителен к удару и трению. Применяется для приготовления подрывных зарядов.

Гексоген получают обработкой уротропина и пентаэритрита азотной кислотой. Является наиболее мощным бризантным взрывчатым веществом. Гексоген – кристаллическое белое вещество, хорошо плавится и не взаимодействует с металлами. Это более мощное взрывчатое вещество, чем тротил и мелинит, но и более чувствительное к механическим воздействиям. Флегматезированый гексоген применяется для снаряжения бронебойных и зенитных снарядов и для изготовления дополнительных детонаторов.

Аммониты (взрывчатые вещества на основе аммонийной селитры) – это суррогатные взрывчатые вещества, которые составляют из смеси аммонийной селитры, тротила, порошка алюминия и других наполнений. По взрывному действию уступают тротилу, малопригодны для хранения и применяются обычно только в военное время (дешевизна сырья). В СССР во время Великой Отечественной Войны аммониты были основными типами взрывчатых веществ. В мирное время их используют в народном хозяйстве (подрыв ледяных заторов, угольных пластов в шахтах и т.д.). Для ручных гранат применяются две разновидности аммонитов – аммотол (смесь аммонийной селитры и тротила) и аммонал – смесь аммонийной селитры, бризантного взрывчатого вещества и порошка алюминия.

Пластит–4 (С–4) – это тестообразная масса кремового или коричневого оттенка (реже – ярко-оранжевого). Состоит из 80 % порошкообразного гексогена и 20 % пластификатора (чем и обусловлены его свойства). По внешнему виду напоминает пластилин или воск, маслянист на ощупь, пластичен в температурном режиме от -30° С до + 50° С. Так же как и тротил, очень устойчив к внешним воздействиям – его можно мять, резать, ронять, подвергать ударам без опасных последствий. Особые свойства пластита определяют его применение для террористических целей – заряд пластита можно поместить в любую щель, раскатать тонким слоем в письмо, спрятать в конструкцию любой конфигурации. Применяется, чаще всего, в какой либо оболочке (бумага, мешочек) и прикрепляется клеящей лентой или скотчем к взрываемому объекту. Пластит–4 поставляется в стандартных брикетах массой 1 кг, обернутых бумагой. Заряды пластита применяются в активной броне танков, а также для снаряжения противопехотных мин МОН–50.

Пороха

Порохами, или метательными взрывчатыми веществами, называются взрывчатые вещества, для которых основной формой взрывчатого превращения является быстрое сгорание со скоростью u в » (1÷10) м/с. Пороха применяются в качестве источников энергии движения снарядов, пуль, мин, реактивных снарядов. Кроме того, пороха используются в качестве вспомогательных средств–воспламенителей, газогенераторов и т.д.

Пороха делятся на две группы – механические смеси и пороха коллоидного типа.

К механическим смесям относятся следующие составы.

· Дымный (черный) порох.

· Аммонийный порох.

· Смесевые высокоэнергетические материалы и твердые ракетные топлива.

Основой всех коллоидных порохов является пироксилин. В зависимости от характера растворителя коллоидные пороха делятся на следующие группы.

· Пироксилиновые пороха (на летучем растворителе).

· Нитроглицериновые пороха (на труднолетучем растворителе).

· Тротиловые пороха (на нелетучем растворителе).

· Вискозные пороха (без растворителя).

Механические смеси

Дымный или черный порох – это механическая смесь калиевой селитры, серы и древесного угля (S, KNO3, C). Более 500 лет дымный порох был единственным взрывчатым веществом, применявшемся в военном деле для изготовления зарядов в артиллерийском и стрелковом оружии и для подрывных работ. Только во второй половине XIX века для боевых зарядов вместо дымного пороха начали применять пироксилиновый порох. Наиболее оптимальный состав дымного ружейного пороха был установлен в конце XVIII века на основе работ М.В. Ломоносова. Состав дымного пороха приведен в табл. 3.3.

Таблица 3.3

Состав дымного пороха

Вещество

Калиевая

селитра

Сера

Древесный

уголь

Этот состав до настоящего времени существенно не изменился. Селитра при нагревании легко выделяет кислород, необходимый для горения угля и серы. С увеличением содержания селитры (до 80 %) сила пороха и скорость его горения увеличиваются. Уголь в составе пороха является горючим веществом.

При увеличении его содержания, скорость горения пороха уменьшается. Сера является цементатором, связывающим селитру с углем, а также горючим веществом, облегчающим воспламеняемость дымного ружейного пороха (сера воспламеняется при более низкой температуре, чем уголь). С увеличением содержания серы скорость горения и сила пороха уменьшается. Дымный ружейный порох получается тщательным перемешиванием измельченных составных частей, прессованием смеси и дроблением прессованной лепешки на зерна различных размеров. Порох чувствителен ко всем видам механического воздействия (удар, трение, искра и т.д.). При попадании пули в пороховой заряд почти всегда происходит его взрыв. Вместе с тем, черный порох не детонирует. При сгорании дымного ружейного пороха образуется 45 % газообразных и 55 % твердых продуктов (дым, нагар в канале ствола). В настоящее время в боевых зарядах дымный ружейный порох не применяется (малая сила пороха, демаскировка дымом, опасность в обращении, гигроскопичность). Применяется для изготовления воспламенителей, а также в запалах ручных гранат.

Аммонийный порох состоит из аммонийной селитры (90 %) и древесного угля (10 %). Получается смешиванием компонентов и прессованием в виде элементов заданной формы (кольца, сегменты). Аммонийный порох – твердое вещество серого цвета. В отличие от дымного пороха все его продукты сгорания – газообразные. Чувствительность к механическим воздействиям – слабая. Очень гигроскопичен и непригоден для хранения. Применяется в военное время для замены (25÷35) % заряда пироксилинового пороха.

Смесевые высокоэнергетические материалы и смесевые твердые ракетные топлива (СТРТ) представляют собой широкий класс энергоемких веществ, использующихся в качестве источников энергии в газогенераторах различного назначения и в ракетных двигателях на твердом топливе. В состав СТРТ входят полимерное горючее-связующее (бутилкаучук), окислитель (перхлорат аммония или нитрат аммония) и металлическое горючее (порошкообразный алюминий).

Коллоидные пороха

Пироксилиновый бездымный порох изготавливается из смеси двух сортов пироксилина – № 1 и № 2 в разных соотношениях. Смесь этих сортов растворяется в спиртово-эфирной смеси. Получаемая однородная желеобразная масса продавливается через специальные фильтры. После резки и сушки получаются пороховые зерна (ленточные, трубчатые, цилиндрические, многоканальные пороха). В состав пироксилинового пороха вводят до 3 % примесей – стабилизаторов, флегматизаторов и пламегасителей. Стабилизаторы (дифениламин) замедляют разложение пороха и увеличивают срок хранения до 20 лет (без стабилизаторов порох хранится в течение 10 лет). Флегматизаторы (камфара) уменьшают скорость горения. Пламегасители (канифоль, дибутилфталат) уменьшают пламя при выстреле. Они поглощают часть энергии пороха и снижают температуру продуктов сгорания. Большой вклад в разработку бездымных порохов внес Д.И. Менделеев. Пироксилиновый порох имеет ряд преимуществ перед дымным ружейным порохом.

· Обладает более высокой энергетикой.

· При сгорании не образует дыма и нагара в стволе орудия (98.5 % – газообразные продукты).

· Позволяет изготавливать заряды разнообразной величины и формы, что дает возможность регулирования продолжительности горения заряда.

· Обладает низкой гигроскопичностью.

· Сохраняет свои свойства при длительном хранении, нечувствителен к удару.

Нитроглицериновый бездымный порох изготавливается из пироксилина, в качестве растворителя применяется нитроглицерин. В зависимости от марки пироксилина различают баллиститы (пироксилин № 2) и кордиты (пироксилин № 1). Преимущества нитроглицериновых порохов перед пироксилиновыми состоят в следующем:

· Более высокие значения силы пороха.

· Меньшая затрата времени на их производство – (5÷7) часов вместо нескольких суток.

· Низкая себестоимость.

· Лучшее сохранение свойств при хранении.

· Применяются для минометов, реактивных систем залпового огня, ракетных двигателей на твердом топливе.

Тротиловый порох изготавливается из смеси пироксилина и тротила. Порох получается путем специальной обработки при повышенной температуре и при большом давлении. В нем отсутствует летучий растворитель, поэтому тротиловый порох более стабилен по своим качествам, чем пироксилиновые и нитроглицериновые пороха. В последнее время получает все большее применение.

Вискозный порох (порох без растворителя) представляет собой пронитрованную и стабилизированную предварительно уплотненную целлюлозу. Эти пороха еще плохо изучены. Применяются для изготовления зарядов к винтовкам и пистолетам.

Пиротехнические составы

Пиротехнические составы применяются для снаряжения специальных снарядов, пуль, ракет и так далее. Многие пиротехнические составы являются взрывчатыми веществами, однако взрывчатые свойства у них выражены значительно слабее, чем у обычных взрывчатых веществ. Энергия, высвобождающая при горении пиротехнических составов, затрачивается не на производство механической работы, а на образование пиротехнического эффекта (освещение местности, инициирование пожара и т.д.). Пиротехнические составы представляют собой механические смеси из горючего, окислителя, цементатора и специальных примесей. В качестве горючего применяются алюминий, магний, их сплавы, бензин, керосин, нефть, скипидар, крахмал и т.д.. В качестве окислителей – соли азотной, хлорной и хлорноватой кислоты, оксиды металлов (окись железа, переокись бария, двуокись марганца и др.). В качестве цементаторов – олифа, канифоль, шеллак, искусственные смолы (бакелит и др.). Они служат для связывания состава и придания ему механической прочности. Специальные примеси служат для окрашивания пламени или дыма.

По характеру применения пиротехнические составы делятся на следующие группы.

· Осветительные.

· Зажигательные.

· Сигнальные.

· Дымовые.

· Трассирующие.

Осветительные составы применяются для снаряжения осветительных патронов, снарядов и авиабомб и служат для освещения местности или отдельных объектов. Наиболее употребительный состав имеет 18 % алюминия, 4 % магния, 75 % азотнокислого бария, 3 % олифы. Осветительные составы прессуются в цилиндрическую оболочку, с одной стороны которой запрессовывается воспламенительный состав (дымный порох). Схема осветительного патрона приведена на рис. 3.6. Характеристики некоторых осветительных составов приведены в табл. 3.4.

Таблица 3.4

Характеристики некоторых осветительных составов

Боеприпас

Сила света, тыс. свечей

Время действия, с

Патрон

Снаряд

Авиабомба

Зажигательные составы применяются для снаряжения пуль, снарядов и авиабомб. Они делятся на три группы.

· Термитно-зажигательные составы, содержащие в качестве окислителя оксиды металлов.

· Зажигательные составы – кислородосодержащие смеси (соли).

· Зажигательные составы, не содержащие окислитель.

Рис. 3.6. Схема осветительного патрона:

1–гильза; 2–капсюль; 3–заряд дымного пороха;

4–воспламенительный состав; 5–осветительный состав; 6-пыж

Термитно–зажигательные составы изготавливаются на основе термита (смесь 25 % алюминия и 75 % окиси железа) с температурой горения порядка 2500° С. В чистом виде термит не применяется, так как имеет небольшой радиус зажигания. Пример термитного зажигательного состава для 76 мм снаряда приведен в табл. 3.5.

Таблица 3.5

Состав термитного зажигательного снаряда

Вещество

Бариевая селитра

Калиевая селитра

Оксид железа

Алюминий

Магний

Цементатор

Зажигательные составы с окислителем в виде различных солей дают высокую температуру горения и легко воспламеняются. Эти составы используются для снаряжения зажигательных малокалиберных снарядов и пуль. Зажигательные составы без окислителя горят за счет кислорода воздуха. В качестве примера приведем авиабомбу с корпусом из электрона (сплав 92 % магния и 8 % алюминия), заполненным термитным составом. При горении такой бомбы развивается температура до (700 ÷ 900)° С и образуются раскаленные искры, которые разлетаются на большое расстояние.

К зажигательным составам относится отвержденное горючее (напалм) – студнеобразная масса, получаемая смешиванием стеариновой кислоты и спиртового раствора едкого натра с нефтепродуктами. Легко воспламеняется и дает яркое объемное пламя.

Самовоспламеняющиеся вещества – белый фосфор и смеси с ним легко воспламеняются на воздухе (Т » 1000° С). Примером использования данного вещества являются бутылки для поджигания танков, широко применявшиеся во время Великой Отечественной Войны («Коктейль Молотова»). Они содержат горючее и фосфор, растворенный в сероуглероде. При испарении растворителя фосфор воспламеняется на воздухе, и зажигаются сначала пары сероуглерода, а затем и основное горючее.

Сигнальные составы дают при горении цветное пламя, например красного, желтого, зеленого, белого цвета. Сигнальные составы с пламенем синего цвета не применяют, так как синее пламя плохо различимо на большом расстоянии. Для получения красного пламени в состав вводят соединения стронция, зеленого пламени – соединения бария, желтого – соли натрия, белого – соли бария и калия. Для увеличения яркости в сигнальные составы вводят до 5 % алюминия или сплава алюминия с магнием. Сигнальные составы применяются в 26 мм патронах (ракетницах). Высота подъема ракеты составляет 90 м, время горения заряда – 6.5 с, сила света пламени – 10000 свечей.

Дымовые составы предназначены для маскировки объектов и задымления боевых порядков противника. Применяются для снаряжения дымовых шашек, снарядов, мин. По характеру процесса дымообразования делятся на три группы.

· Дымообразование в результате горения.

· Дымообразование в результате взаимодействия состава с влагой воздуха.

· Дымообразование в результате термической возгонки.

К первой группе относится белый фосфор. При температуре +50° С, он воспламеняется и горит с образованием густого белого дыма. Ко второй группе относятся триоксид серы, четыреххлористое олово, хлорсульфоновая кислота. К третьей группе относятся дымовые шашки (шашки Ершова), которые состоят из калийной селитры (10 %), хлористого аммония (40 %), бертолетовой соли (20 %), древесного угля (10 %), нафталина (20 %). При горении смеси Ершова происходит возгонка хлористого аммония и нафталина, конденсация паров которых приводит к образованию дыма.

Трассирующие составы служат для обозначения пути полета пули или снаряда (белая или красная трасса). Примеры трассирующих составов приведены в табл. 3.6.

Пиротехнические составы, наряду с рассмотренными выше примерами применения для военных целей, широко используются в качестве зарядов для снаряжения ракет и пиротехнических устройств при проведении салютов, организации красочных фейерверков и других праздничных зрелищ. Используемые при этом пиротехнические заряды являются комбинацией различных составов.

Таблица 3.6

Состав трассирующих смесей

Трассирующий состав

Вещество

Белая трасса

Нитрат бария

Магний

Шеллак

Красная трасса

Азотнокислый стронций

Магний (алюминий)

Цементатор

Инициирующие взрывчатые вещества обладают наибольшей чувствительностью к внешним воздействиям. Развитие процесса детонации в них, т. е. установление детонационной скорости, происходит за очень малый промежуток времени, почти мгновенно, и поэтому они способны детонировать в очень малых количествах (порядка десятых долей грамма) от таких простых начальных импульсов, как искра, луч пламени, накол, возбуждая взрывчатое превращение в других, менее чувствительных веществах.

Весьма большая чувствительность и слабые взрывчатые характеристики инициирующих взрывчатых веществ не позволяют использовать их в качестве основных взрывчатых веществ для получения от них механической работы.

Гремучая ртуть получается из металлической ртути путем обработки ее азотной кислотой и этиловым спиртом в присутствии некоторых добавок (соляной кислоты и медных опилок). В результате после

Промывки образуется белый кристаллический порошок, очень чувствительный ко всякого рода внешним воздействиям, а потому требующий крайне осторожного обращения с ним.

При увлажнении гремучая ртуть теряет свои взрывчатые свойства; при содержании 10% влаги только горит и не взрывается, а при 30% влажности даже не загорается.

В кислотах и щелочах гремучая ртуть разлагается, а концентрированная серная кислота вызывает ее взрыв.

С металлами практически не взаимодействует, лишь с алюминием она энергично реагирует, выделяя тепло и образовывая невзрывчатые соединения. С медью, из которой изготовляются гильзы капсюлей-детонаторов и чашечки капсюлей-воспламенителей, гремучая ртуть может взаимодействовать лишь в присутствии влаги, но химические реакции при этом идут крайне медленно с образованием фульмината меди - вещества, более чувствительного к трению, удару и нагреву.

Изменения температуры в пределах обычных ее колебаний не влияют на стойкость гремучей ртути, но длительное нагревание при температурах более +50° С приводит к ее разложению и к потере ею взрывчатых свойств. При температуре ниже -100° С гремучая ртуть также теряет свои взрывчатые свойства.

Гремучая ртуть в настоящее время применяется только для снаряжения капсюлей-детонаторов и электродетонаторов и в капсюльных составах, идущих на снаряжение капсюлей-воспламенителей.

Азид свинца получается из металлического натрия и свинца в результате взаимодействия их с аммиаком и азотной кислотой. Азид свинца - единственное из применяемых взрывчатое вещество, не содержащее кислорода. Он представляет собой белый мелкокристаллический порошок, негигроскопичный. При воздействии на него влаги он не снижает своей чувствительности и способности детонировать. Однако в присутствии влаги и при повышенных температурах азид свинца взаимодействует с металлами, образуя азиды металлов (например, азид меди), которые во много раз чувствительнее, чем азид свинца.

Кислоты, щелочи, углекислый газ (особенно в присутствии влаги) и солнечный свет медленно разлагают азид свинца. Температурные колебания не влияют на его стойкость, но при нагревании до 200°С он начинает разлагаться.

Азид свинца по сравнению с гремучей ртутью менее чувствителен к искре, лучу пламени и удару; но инициирующая способность азида свинца выше, чем у гремучей ртути. Так, например, для инициирования одного грамма тетрила нужно 0,29 г гремучей ртути и только 0,025 г азида свинца.

Азид свинца применяется для снаряжения капсюлей-детонаторов и электродетонаторов.

Тенерес [С6H(NO2)3O2PbH2O], сокращенно ТНРС , представляет собой свинцовую соль стифнииовой кислоты и называется стифнатом свинца или тринитрорезор-цинатом свинца. Это мелкокристаллический порошок золотисто-желтого цвета, мало гигроскопичный и не взаимодействующий с металлами. Кислоты его разлагают. Под действием солнечного света тенерес темнеет и разлагается. Температурные колебания на тенерес действуют так же, как и на азид свинца.

47. В зависимости от применения взрывчатые вещества разделяются

В зависимости от применения взрывчатые вещества разделяются на три большие группы: инициирующие, дробящие, метательные (пороха).

Инициирующие ВВ отличаются тем, что обычной формой их взрывчатого превращения является полная детонация. Инициирующие ВВ наиболее чувствительны к внешним воздействиям и легко взрываются от незначительного удара, накола, луча пламени и т.д. Они идут преимущественно на изготовление всевозможных воспламенителей и снаряжение капсюлей, применяемых для инициирования взрывчатых превращений других ВВ. Для снаряжения патронных капсюлей-воспламенителей большей частью используется ударный состав (смесь гремучей ртути, бертолетовой соли и антимония).

К инициирующим взрывчатым веществам относятся:

Гремучая ртуть;

Азид свинца;

ТНРС (тринитрорезорцинат свинца, стифнат свинца).

Дробящими (бризантными) ВВ называются такие, которые при относительной безопасности в обращении безотказно детонируют. Взрывают их капсюлями инициирующих ВВ. Скорость взрывчатого превращения бризантных ВВ достигает нескольких сот метров в секунду. Применяются они в качестве разрывных зарядов снарядов, авиационных бомб, мин и гранат.

Бризантные ВВ делятся на 3 группы:

а) ВВ повышенной мощности (ТЭН (тетранитропентаэритрит, пентрит); гексоген (триметилентринитроамин); тетрил (тринитрофенилметилнитроамин);

б) ВВ нормальной мощности (тротил (тринитротолуол, тол, ТНТ); пикриновая кислота (тринитрофенол); пластичные ВВ (пластиды);

в) ВВ пониженной мощности (аммиачная селитра; аммиачноселитренные ВВ(аммониты, динамиты).

Также к бризантным ВВ относятся нитроглицерин и др.

Нитроглицерин представляет собой маслянистую бесцветную жидкость. По свойствам довольно нестабилен и может с детонировать при ударе, поэтому применяется нечасто.

Динамит представляет собой абсорбирующий материал, вымоченный в нитроглицерине. После этого он оборачивается в лощеную бумагу. Со временем капли жидкого нитроглицерина появляются на его поверхности, и он становится менее устойчивым. Когда нитроглицерин начинает выделяться из него, бруски превращаются в жирное месиво и становятся очень опасными в обращении. Большинство других взрывчатых веществ также “потеют”, и мокрые пятна на пакете являются верным признаком того, что в нем может быть взрывное устройство.

Метательными ВВ, илипорохами , называются такие, взрывчатые превращения которых носят характер быстрого горения, протекающего большей частью со скоростью нескольких метров в секунду. Пороха используются во всех видах огнестрельного оружия в качестве источника энергии, необходимой для сообщения пуле (снаряду) движения. Поэтому из всех видов ВВ пороха представляют для стрельбы наибольший интерес, что требует, хотя бы в общих чертах, ознакомления с их свойствами и особенностями.

Пороха по составу, физическим и химическим свойствам подразделяются на дымные (механические смеси) и бездымные (коллоидные).

Дымный, или черный порох по сравнению с другими видами известных в настоящее время метательных ВВ в баллистическом отношении невыгоден и в отношении работы малопродуктивен; после взрыва его пороховые газы увеличивают свой объем лишь в 280-300 раз по сравнению с первоначальным объемом заряда.

В качестве зарядов также могут быть использованы тротиловые шашки (75 г, 200 г и 400 г), ящики с тротиловыми шашками массой по 25 кг, брикеты из пластичного взрывчатого вещества или другие стандартные заряды военного назначения (сосредоточенные, удлиненные, кумулятивные). В зависимости от назначения взрывного устройства в качестве заряда могут быть использованы емкости с дымным и бездымным порохом.

Реферат

Новые инициирующие взрывчатые вещества, не содержащие свинца и ртути

Введение

инициирующий взрывчатка азид оксидиазосоединение

Инициирующими взрывчатыми веществами называются такие взрывчатые вещества, которые обладают весьма высокой чувствительностью и взрываются от незначительного внешнего механического (удар, трение) или теплового (луч лазера, пламя, нагрев, электрический ток) воздействия. Эти вещества всегда детонируют и вызывают детонацию других взрывчатых веществ. Инициирующие взрывчатые вещества применяются в небольших количествах для снаряжения капсюлей, создающих первоначальный импульс взрыва. У инициирующих ВВ переход горения в детонацию происходит быстро, на расстоянии, не превышающем нескольких миллиметров от места поджигания. Эффективность инициирующих ВВ тем выше, чем короче участок перехода горения в детонацию и чем выше скорость детонации. Если поместить немного инициирующего ВВ на заряд из бризантного ВВ и поджечь, то взрыв его произведет такой сильный удар, в результате которого взорвется и бризантное ВВ.

Существует две основные области применения ИВВ:

) Для возбуждения детонации в зарядах БВВ.

) Для сенсибилизации воспламенительных составов, предназначенных для зажигания пороховых зарядов или инициирования детонации в зарядах основного ИВВ.

В качестве инициирующих взрывчатых веществ наибольшее применение имеют гремучая ртуть, азид свинца и стифнат свинца, но в реферате рассматриваются исключительно ИВВ, не содержащие свинца и ртути.

1.
Соли диазония

Соли диазония с анионами-окислителями обладают взрывчатыми свойствами, причем практически все перхлораты арилдиазония - ИВВ. Высокую инициирующую способность, сочетающуюся с удовлетворительными эксплуатационными характеристиками, имеет 2,4 - динитро-диазобензолперхлорат (2,4 - динитрофенилдиазоний перхлорат). Исходным продуктом для его получения является 2,4 - динитроанилин.

4 - Динитродиазобензолперхлорат является эффективным ИВВ, обладая следующими свойствами: t всп, 5 сек = 215 о С;  = 1,65 г./см 3 , минимальный заряд по тетрилу 0,007 г. (для сравнения: гремучая ртуть - 0,35 г., а азид свинца - 0,025 г.).

4 - Динитродиазобензолперхлорат разлагается на свету, однако продукты фотораспада образуют светозащитную пленку, поэтому распадается только поверхностный слой и инициирующая способность заряда не изменяется. Продукт термически стоек: взрывчатые свойства вещества сохранились после выдержки зарядов в течение двух лет при 80 о С. В 40-е годы прошлого века динитродиазобензолперхлорат успешно прошел опытную проверку как ИВВ для промышленных КД. В последующие десятилетия делались неоднократные попытки найти практическое применение этому перхлорату фенилдиазония, в том числе как малотоксичному ИВВ для коммерческих КД и ЭД. Однако широкому использованию 2,4 - динитродиазобензолперхлората мешают два существенных недостатка: гигроскопичность, технический продукт перепрессовывается.

2. Оксидиазосоединения

Многие оксидиазофенолы проявляют взрывчатые свойства. Наибольшее практическое значение как ИВВ в ряду диазофенолов имеет 2-диазо - 4,6 - динитрофенол, C 6 H 2 N 4 O 5 , (диазодинитрофенол, ДДНФ, DDNP ) . Молекулярная масса 210,1, кислородный баланс -60,9%.

Диазодинитрофенол не гигроскопичен, незначительно растворим в воде, растворим в метаноле и этаноле, легко растворим в ацетоне, нитроглицерине, нитробензоле, анилине, пиридине и уксусной кислоте. На солнечном свету темнеет. Плотность ДДНФ  мнк. = 1,719 г./см 3 , теплота образования 321 кДж/моль.

В литературе предложены для ДДНФ как открытая, так и циклическая структуры диазофенольного фрагмента.


Согласно квантово-химическим расчетам наиболее вероятной для этого соединения в газовой фазе является следующая открытая структура:


Бризантность ДДНФ составляет ~95% от бризантности ТНТ, фугасность в свинцовом блоке равна 326 см 3 /10 г. Температура вспышки диазодинитрофенола t всп, 5 сек = 175-180 о С; минимальный заряд по тетрилу равен 0,13 г., то есть меньше, чем у гремучей ртути. ДДНФ менее чувствителен к удару, чем азид свинца. Скорость детонации ДДНФ 4400 м/с при плотности заряда 0.9 г./см 3 , 6600 м/с при плотности заряда 1,5 г/см 3 , 6900 м/с при плотности заряда 1,6 г/см 3 . Взрывчатое разложение ДДНФ описывается следующим уравнением:

C 6 H 2 N 4 O 5 à 42 CO + 2,52 CO 2 + 2,94 H 2 O +

3,15 H 2 + 7,67 C +7,87 HCN + 16,1 N 2

Получают диазодинитрофенол диазотированием пикраминовой кислоты нитритом натрия в 10%-ной серной кислоте согласно схеме:


Целевой продукт выпадает из реакционной массы в виде красно-коричневого осадка. Недостатком метода синтеза ДДНФ является наличие большого количества токсичных сточных вод. Сырьевая база ДДНФ достаточно широка, поскольку исходное вещество - пикраминовая кислота, которую синтезируют частичным восстановлением пикриновой кислоты сульфидом натрия, является товарным продуктом (она применяется при синтезе ряда красителей).

ДДНФ как ИВВ имеет следующие недостатки: перепрессовывается, у него недостаточно высокая термостойкость, соединение быстро темнеет на солнечном свету, к тому же стимулирует иммунный ответ, который способствует развитию аллергического синдрома.

Диазодинитрофенол нашел применение в качестве ИВВ промышленных средств инициирования в США и Китае, а также как компонент малотоксичных ударных составов капсюлей-воспламенителей стрелкового оружия, в том числе спортивного и охотничьего в Европе и Северной Америке

. Азиды

Азид серебра , AgN 3 - мол. масса 149,9. Инициирующее взрывчатое вещество. Под действием света темнеет. Нерастворим в воде и органических растворителях. Негигроскопичен. Растворим в водном аммиаке и во фтористом водороде. Кристаллизуется из водного аммиака. Разрушается азотной кислотой. Плотность кристаллов азида серебра составляет 5,1 г/см 3 . Энергия кристаллической решетки равна 857,69 кДж/моль. Энтальпия образования (DH f o) составляет + 279,5 кДж/моль, по другим данным +311 кДж/моль. Скорость детонации при максимальной плотности равна 4,4 км/с. Объем газов при детонации составляет 244 л/кг. Фугасность равна 115 см 3 /10 г. Азид серебра чувствителен к удару и трению. Продукт не перепрессовывается. По инициирующей способности азид серебра заметно превосходит азид свинца. Скорость детонации азида серебра составляет 3830 м/с при плотности 2,0 г/см 3 . Изменение скорости детонации азида серебра при увеличении плотности заряда описывается уравнением:

D r = D 0 + 770 (r - r 0) м/с, где r 0 = 2 г/см 2 .

Давление детонации азида серебра зависит от плотности заряда:

P = (40r - 61) . 10 2 МПа

Температура размягчения азида серебра 250 0 С. Полностью азид серебра плавится при 300 0 С (с разложением). Быстрое нагревание до 300 0 С вызывает взрыв азида серебра. Недостатком азида серебра является плохая совместимость с сульфидом сурьмы (Sb 2 S 3) и тетразеном, которые входят в большинство рецептур накольных составов. Азид серебра получают при смешении растворов азида натрия и водорастворимых солей серебра. В ряде стран (Великобритания, Швеция) производят азид серебра в небольших количествах по реакции

AgNO 3 + NaN 3 AgN 3 + NaNO 3

На кафедре ХТОСА ЛТИ им Ленсовета (СПбГТИ(ТУ)) была разработана альтернативная технология получения сыпучего азида серебра по реакции:

3 + N 2 Н 4 + NaNO 2  AgN 3 + NaNO 3 + 2Н 2 О

Азид серебра ограниченно применяют в качестве ИВВ в малогабаритных средствах инициирования, где азид свинца не эффективен, и в термостойких капсюлях-детонаторах. При увеличении габаритов инициирующего заряда капсюля картина меняется: азид серебра становится менее эффективным по сравнения с азидом свинца ИВВ, поскольку у него скорость детонации существенно ниже. Практическое использование азида серебра сдерживается высокой чувствительностью к трению, трудностью получения в сыпучем виде, а также высокой стоимостью.

Азид кадмия , Cd(N 3) 2 мол. масса 196,46 - белое кристаллическое вещество, инициирующее ВВ. Растворяется и гидролизуется водой. Гигроскопичен. Плотность монокристаллов 3,24 г./см 3 . Теплота взрыва по различным оценкам находится в пределах 2336-2616 кДж/кг, Т пл. = 291 0 С (с разл.), Т всп. (5 c) = 360 0 С. Скорость детонации азида кадмия 3760 м/с при плотности 2,0 г/см 3 . Изменение скорости детонации азида свинца при увеличении плотности заряда описывается уравнением:

D r = D 0 + 360 (r - r 0) м/с, где r 0 = 2 г/см 2 .

Давление детонации азида свинца зависит от плотности заряда:

P = (59r - 106).10 2 МПа

Азид кадмия чувствителен к удару и трению. Инициирующая способность азида кадмия больше, чем азида свинца. Получают азид кадмия при взаимодействии гидроксида или карбоната кадмия с избытком HN 3 .

Cd(OH) 2 + 2 HN 3 à Cd(N 3) 2 + 2 H 2 O 3 + 2 HN 3 à Cd(N 3) 2 + CO 2 + H 2 O

Азид таллия , TlN 3 , мол. масса 246,41 - желтый кристаллический порошок. Инициирующее ВВ. Плохо растворяется в воде и органических растворителях. Энергия кристаллической решетки 685,1 кДж/моль, энтальпия образования (DH f o) = 234 кДж/моль, Тпл = 334 0 С, Твсп. (1 с) = 500 0 С. Азид таллия менее чувствителен к удару и трению, чем азид свинца. Инициирующая способность азида таллия заметно меньше, чем азида свинца. Токсичен. Плохо совместим с нитросоединениями. Удобным лабораторным способом получения азида таллия является реакция водных растворов перхлората таллия и азида натрия.

TlClO 4 + NaN 3 à TlN 3 + NaClO 4

Азид таллия ядовит. Азид таллия в промышленности как ИВВ не используется. Находит ограниченное применение в научных исследованиях.

. Органические пероксиды

Пероксид ацетона (ацетон дипероксид, 1,1,4,4 - тетраметил - 2,3,5,6 - тетраоксациклогексан) , (С 3 Н 6 О 2) 2 - мол. масса 148, белое кристаллическое инициирующее взрывчатое вещество. Ацетон дипероксид хорошо растворяется в органических растворителях: бензоле, ацетоне, хлороформе, диэтиловом эфире, петролейном эфире. Плотность = 1,33 г./см 3 , Т пл. = 132 - 133 0 С, Т всп. (5 с) около 180 0 С. Очень летучее вещество. Давление паров ацетон дипероксида 17,7 Па при 25 0 С. К удару ацетон дипероксид менее чувствителен, чем азид свинца.


Его инициирующая способность больше, чем у гремучей ртути, но меньше, чем у азида свинца. По другим данным заряд 0,5 г ацетон дипероксида, запрессованного в гильзу от КД №8 под давлением 30 МПа не инициировал заряд гексогена.

Получают ацетон дипероксид при взаимодействии ацетона с кислотой Каро (раствором пероксида водорода в концентрированной серной кислоте) в среде уксусного ангидрида.

Перексид трициклоацетона (циклотриацетонпероксид, 1,1,4,4,7,7 - гексаметил - 2,3,5,6.8.9-гексаоксациклононан) , С 9 Н 18 О 6 , мол. масса 222,1 - инициирующее взрывчатое вещество.

(СН 3) 2 С - О - О - С(СН 3) 2

Циклотриацетонпероксид образует бесцветные кристаллы в виде призм. Плотность монкрсталла 1,272 г./см 3 (рентген), хорошо растворяется в бензоле, ацетоне, хлороформе, эфире, петролейном эфире, пиридине, ледяной уксусной и азотной кислотах. В этиловом спирте растворяется при нагревании, не растворяется в воде и водных растворах аммиака. Образует не менее шести полиморфных форм. Гидролизуется разбавленными кислотами. Т пл. составляет 97 0 С. Энергия образования циклотриацетонпероксида -90,8 кДж/моль. Кислородный баланс -151.3%. Теплота взрыва 5668 кДж/кг. Фугасность 250 см 3 /10 г. Скорость детонации при плотности 0,92 г./см 3 3750 м/с, при плотности 1,18 г./см 3 - 5300 м/с, фугасность в свинцовом блоке 250 см 3 /10 г. Циклотриацетонпероксид не корродирует медь, алюминий, цинк, олово, железо; корродирует свинец. Чувствительность к удару у циклотриацетонпероксида выше, чем у азида свинца, по инициирующей способности циклотриацетонпероксид уступает азиду свинца: его минимальный заряд по гексогену равен 0,1 г (давление прессования 30 МПа) и 0,16 г. по тротилу.

Продукт получают из ацетона, подкисленного серной кислотой, на который действуют пергидролем (разбавленным раствором пероксида водорода).

Циклотриацетонпероксид является кинетическим продуктом окисления ацетона, а ацетон дипероксид - термодинамическим, то есть при хранении тример может перейти в димер. Практического значения как ИВВ пероксиды ацетона из-за высокой летучести и склонности к сублимации не имеют.

5. Ацетилениды

В нейтральной или слабокислой среде образуется смешанная соль Ag 2 C 2 . AgNO 3 - инициирующее взрывчатое вещество, молекулярная масса 409,7, плотность 5,369 г./см 3 (рентген), температура разложения около 220 0 С, фугасность в свинцовом блоке 136 см 3 /10 г., теплота взрыва 1888 кДж/кг. Скорость детонации 2250 м/с при плотности 2,51 г./см 3 и 4540 м/с при плотности 3,19 г./см 3 . Инициирующая способность больше, чем у гремучей ртути и зависит от способа получения двойной соли. Минимальный заряд Ag 2 C 2 . AgNO 3 равен 0,005 г. по ТЭНу, 0,07 г. по тетрилу и 0,25 г. по тротилу. Соль не перепрессовывается. На практике в качестве ИВВ не применяется.

. Соли динитробензфуроксана

(КДНБФ) представляет собой малотоксичное «псевдоинициирующее» вещество.

6 - Динитро-7-гидрокси-7-гидробензфуроксанид калия

Температура плавления калиевого производного равна 174 0 С, температура вспышки при 5-секундной задержке КДНБФ составляет 207 - 210 0 С, температура начала интенсивного разложения около 190 0 С. Плотность монокристалла 2,21 г./см 3 . Чувствительность к трению КДНБФ такая же, как у ТНРС’а. По чувствительности к удару аддукт (s-комплекс Мейзенгеймера) превосходит азид свинца, но уступает гремучей ртути.

Получить КДНБФ можно из о-нитроанилина по следующей схеме:


Используется КДНБФ в малотоксичных воспламенительных пиротехнических составах вместо ТНРС совместно с нетоксичным окислителем KNO 3 и добавками, повышающими восприимчивость составов к удару и трению. Опытное производство продукта КДНБФ началось в США вскоре после второй мировой войны. Существенным недостатком соединения КДНБФ является его недостаточно высокая термостойкость.

В начале XXI века была получена и исследована как возможный малотоксичный заменитель ТНРС калиевая соль 4,6 - динитро-7-гидроксибензофуроксана (КДНГБФ),

Калиевая соль 4,6 - динитро-7-гидроксибензофуроксана

В отличие от соединения КДНБФ, которое является комплексом Мейзенгеймера, веществоКДНГБФ представляет собой простую соль.

Калиевая соль существует в виде моногидрата и в безводной форме. Плотность КДНГБФ лежит в диапазоне 1,94 - 2,13 г./см 3 . Температура начала интенсивного разложения соли КДНГБФ около 270 0 C, вещество сохраняет эксплуатационные свойства после нагревания при 120 0 С в течение 90 дней. Вещество КДНГБФ является быстрогорящим соединением, с хорошей термостойкостью и достаточно безопасным в обращении.

Получают КДНГБФ из доступного мета-броманизола по следующей схеме:


На заключительной стадии реакции азид-ион замещает бром, а метокси-группа замещается на гидроксил.

С начала 2009 г. в США соль КДНГБФ допущена к применению в малотоксичных пиротехнических составах для средств инициирования.

7. Координационные металлокомплексы с внешней сферой

Возросшие требования по технологической, эксплуатационной и экологической безопасности инициирующих взрывчатых веществ привели исследователей к поиску энергоемких соединений в ряду комплексных солей d-металлов .

В США в качестве ВВ для безопасных средств инициирования было предложено использовать перхлорат пентааммин (5-циано-2Н-тетразолато-N 2) кобальта(III) (CP)

Перхлорат пентааммин (5-циано-2Н-тетразолато-N 2) кобальта(III), CP

Плотность монокристаллов комплекса СР составляет 1,97 г./см 3 , температура начала интенсивного разложения (при скорости нагревания 20 о С /мин.) равно 288 0 С. Образец СР после выдержки в течение трех лет при 80 0 С сохранил все эксплуатационные свойста. Участок перехода горения в детонацию (при диаметре заряда 5 мм) примерно 4,5 мм, время перехода горения в детонацию около 75 мкс, скорость детонации 7,18 км/с при плотности 1,75 г./см 3 . Зависимость скорости детонации СР от плотности заряда описывается следующим уравнением:

D = 0,868 + 3,608r,

где D - скорость детонации (км/с),

r - исходная плотность заряда СР (г/см 3).

Все измерения проведены для диаметра заряда 6,35 мм.

Чувствительность к удару комплекса СР меньше, чем чувствительность ТЭНа. Металлокомплекс плохо совместим со штатным БВВ - октогеном. СР слабо гигроскопичен.

Технологический процесс получения СР, разработанный фирмой Unidinamic (США), состоит из ряда стадий.

Вначале получают нитрат карбоксипентаамминкобальта (III) (CPCN) по реакции:

2 Co(NO 3) 2 + NH 3 (H 2 O) + 2 (NH 4) 2 CO 3 + 1/2O 2 à

à 2 NO 3 + 2 NH 4 NO 3 + H 2 O

Процесс синтеза комплекса CPCN включает барботирование воздуха через перемешиваемую пастообразную массу карбоната аммония и нитрата кобальта в растворе аммиака в течение 96 часов для окисления Со 2+ до Со 3+ . После окончания аэрирования ярко-красную реакционную массу нагревают до 70 -75 0 С для растворения соли CPCN, фильтруют от примесей и охлаждают до 0 0 С. Выпавший продукт промывают спиртом и сушат.

Полученное вещество не обладает взрывчатыми свойствами.

Для получения перхлората аквапентаамминкобальта (III) (АРСР) комплекс СPCN обрабатывают большим избытком хлорной кислоты.

NO 3 + 3 HClO 4 à (ClO 4) 3 + СО 2 + HNO 3

Процесс протекает в два этапа.

Очистку комплекса СР-сырца производят из подкисленного хлорной кислотой раствора перхлората аммония. При очистке удаляется основная часть «амидного комплекса» и практически весь непрореагировавший циантетразол, а также остатки азотной кислоты. Нужный фракционный состав СР получают при добавлении горячего водного раствора очищенного СР к охлажденному пропанолу-2. После фильтрации продукт просеивают и сушат при 60 - 65 0 С в течение нескольких часов. За одно осаждение получают около 1 кг товарного СР, пригодного для снаряжения средств инициирования.

Эта реакция является ключевой во всем процессе синтеза СР.

Вещество СР предложено к использованию в электродетонаторах. Однако комплекс токсичен, что препятствует его широкому применению.

Перхлорат пентааммин (5-нитротетразолато-N 2) кобальта (III) (NCP, НКТ) нашел ограниченное применение в России в качестве ВВ для безопасных средств инициирования. Вещество НКТ по сравнению с традиционными ИВВ обладает пониженной чувствительностью к разрядам статического электричества. Плотность монокристаллов комплекса НКТ 2,03 г./см 3 , температура начала интенсивного разложения 265 0 С (TG/DTA). Термостатирование в герметичных условиях при 200°С в течение 6 часов не приводит к изменению его свойств. Участок перехода горения в детонацию у НКТ в диаметре 6,25 мм при r=1,60-1,63 г./см 3 составляет около 4,5 мм. Скорость детонации вещества НКТ составляет 6,65 км/с при плотности 1,61 г./см 3 . Минимальный заряд по гексогену в гильзе от КД №8 равен 0,15-0,20 г. Чувствительность к удару комплекса НКТ меньше, чем чувствительность ТЭНа. Продукт негигроскопичен. Соединение НКТ менее токсично, чем комплекс СР.

Перхлорат пентааммин (5-нитротетразолато-N 2) кобальта (III), НКТ

Технологический процесс получения НКТ аналогичен технологическому процессу приготовления CP. Целевой комплекс синтезируют из комплексной соли АРСР и натриевой соли 5-нитротетразола в водном хлорнокислом растворе при 95 - 100 0 С в течение трех часов. Процесс очистки комплекса НКТ от примесей принципиально не отличается от способа приготовления товарного CP.

Как одно из наиболее перспективных ВВ для безопасных средств инициирования, в том числе лазерных, рассматривается перхлорат тетрааммин-цис-бис (5-нитро-2Н-тетразолато-N 2) кобальта(III) (BNCP):

Перхлорат тетрааммин-цис-бис (5-нитро-2Н-тетразолато-N 2) кобальта(III), (BNCP)

Плотность монокристалла вещества BNCP составляет 2,05 г./см 3 , скорость детонации при плотности 1,79 г./см 3 равна 7117 м/с, температура начала интенсивного разложения (при скорости нагревания 20 о С /мин.) 269 о С (ДСК). Минимальный заряд по гексогену в гильзе от КД №8 равен 0,05 г., время перехода горения в детонацию около 10 мкс. Чувствительность к удару у комплекса BNCP больше, чем у вещества СР, но меньше, чем у ТЭНа. Вещество BNCP получают по реакции:


Реакция протекает при температуре около 90°С и времени выдержки около 3 часов. В синтезе BNCP исходный тетраамминат кобальта использовали в виде перхлората ClO 4 или нитрата NO 3 , синтез и свойства которых подробно описаны в литературе. Натриевая соль 5-нитротетразола была получена или по реакции Зандмейера в присутствии солей меди (см. раздел 6.2), или в результате следующего некаталитического процесса:


Реакцию проводят в две стадии. На первом этапе диазотируют 5-аминотетразол избытком нитрита натрия в среде серной кислоты. На втором этапе реакционную массу нейтрализуют карбонатом натрия, отгоняют воду и экстрагируют целевой продукт ацетоном из смеси солей. Нитротеразолат натрия выделяют в виде кристаллогидрата, который менее опасен в обращении, чем безводная соль.

Выход комплекса BNCP составлял 50-60%, считая на комплексный карбонат кобальта. Комплекс BNCP нашел применение в системах пироавтоматики ракетных комплексов в США в составе полупроводниковых и оптических детонаторов.

Комплексные перхлораты амминатов кобальта (III) с тетразольными лигандами термостойки, негигроскопичны, более безопасны, чем штатные ИВВ. Эти вещества не имеют в своем составе высокотоксичных тяжелых металлов: ртути, свинца, кадмия. Комплексный катион амминкобальта (III) малотоксичен. Но в состав этих кобальтовых комплексов входит биологически опасный перхлорат-анион, который вероятно является тератогеном (вызывает уродства во время внутриутробного развития ребенка) и действует на щитовидную железу. Потому комплексные перхлораты амминатов кобальта (III) с азольными лигандами не могут быть причислены к «зеленым» инициирующим веществам.

Между тем, поиск малотоксичных энергонасыщенных веществ для средств инициирования привел исследователей из Лос-Аламосской Национальной лаборатории (США) в начале XXI века к получению медных и железных комплексных солей 5-нитротетразола, представленных как идеальные «зеленые» инициирующие вещества. Комплексы имеют следующую брутто-формулу:

(Cat) 1-4 [М II (NТ) 3-6 (H 2 O) 3-0 ],

где Cat= NH 4 , Na, М = Fe, Cu

Авторы исследования утверждают, что эксплуатационные свойства этих металлокомплексов легко регулировать природой Cat и М, а также содержанием N Т - в молекуле. Было найдено, что комплексы

Na 2 и Na 2

являются более безопасными ИВВ, чем АС и ТНРС. Некоторые характеристики комплексных нитротетразолатов Fe II и Cu II приведены в таблице.

Свойства металлокомплексных нитротетразолатов Fe II и Cu II

При высоких давлениях комплексы перепрессовываются. Испытания показали, что опытные КД и ЭД, содержащие инициирующие заряды комплекса Na 2 или соли Na 2 по своим характеристикам не отличались от штатных, снаряженных азидом свинца. Промышленного производства этих металлокомплексов в настоящее время, по-видимому, не существует.

То, что гидразинаты никеля с анионами-окислителями имеют короткий участок перехода горения в детонацию и могут использоваться для инициирования органических энергонасыщенных веществ, известно около ста лет. Однако эти соединения по эффективности уступают азиду свинца, поэтому до последнего времени не рассматривалась возможность их практического применения в КД и ЭД. Поиск экологически чистых энергонасыщенных соединений, не наносящих вред окружающей среде, заставил исследователей вновь вернуться к этому классу металлокомплексных солей. Одним из перспективных «зеленых» энергонасыщенных соединений, способных заменить азид свинца в промышленных КД и ЭД, является комплексный нитрат гидразинникеля (II) Ni(N 2 H 4) 3 (NO 3) 2 . Плотность монокристалла комплекса 2,129 г./см 3 . Плотность прессованного заряда комплекса Ni(N 2 H 4) 3 (NO 3) 2 равна 1,55 г./см 3 (при давлении прессования 20 - 40 МПа) и около 1,70 г./см 3 (при давлении прессования 60 - 80 МПа). Заряды комплексного нитрата никеля перепрессовываются при давлении свыше 60 МПа. Температура вспышки комплексного гидразината никеля при 5-секундной задержке составляет 167 0 С. Температура начала разложения и температура начала интенсивного разложения, определенные методом дифференциального термического анализа (DTA), равны 210 0 С и 220 0 С соответственно. Энергия активации термораспада комплексного нитрата никеля составляет 78 кДж/моль (по результатам TG/DTA анализа) и 89 кДж/моль (исхода из Т вспышки). Скорость детонации металлокомплекса 7,0 км/с при плотности заряда 1,7 г/см 3 . Минимальный заряд Ni(N 2 H 4) 3 (NO 3) 2 в гильзе от КД №8 по ТЭНу равен 0,15 г. Комплексный нитрат никеля получают из доступного сырья, в стандартной аппаратуре в водной среде при температуре 65 0 С по уравнению:

Ni(NO 3) 2 *6H 2 O + 3N 2 H 4 *H 2 O à Ni(N 2 H 4) 3 (NO 3) 2 + 9H 2 O

Нитрат гидразинникеля (II)

Комплексный нитрат Ni(N 2 H 4) 3 (NO 3) 2 (вещество розового цвета) не гигроскопичен и практически нерастворим в воде, он совместим с конструкционными материалами. Металлокомплекс устойчив к действию солнечного света и рентгеновского излучения, малочувствителен к зарядам статического электричества. В Китае разработана промышленная технология получения комплексного гидразината никеля. Комплексный нитрат никеля Ni(N 2 H 4) 3 (NO 3) 2 используется в Китае в экологичных промышленных КД и ЭД.

Комплексный азид гидразинникеля (II) (N 3) 2 - еще один кандидат на замену азида свинца в «зеленых» промышленных КД и ЭД. Плотность монокристалла комплекса 2,12 г./см 3 . Температура вспышки комплексного азида никеля при 5-секундной задержке около 193 0 C. Температура начала разложения равна 186 0 C (DTA). Продукт разлагается в две макрокинетические стадии. Энергия активации первой стадии термораспада равна 142,6 кДж/моль, второй стадии составляет 109,2 кДж/моль. Скорость детонации металлокомплекса 5,42 км/с при плотности заряда 1,497 г./см 3 . Минимальный заряд (N 3) 2 в гильзе от КД №8 по гексогену равен 0,045 г. Чувствительность к удару комплекса азида никеля меньше чувствительности ТЭНа. Комплексный азид получают из нитрата или ацетата никеля, гидразин-гидрата и азида натрия по уравнению:

Ni(NO 3) 2 *6H 2 O + 2N 2 H 4 *H 2 O + 2NaN 3 à (N 3) 2 + 8H 2 O + 2NaNO 3

Азид гидразинникеля (II)

Ni(CH 3 COO) 2 *4H 2 O+2N 2 H 4 *H 2 O+2NaN 3 à (N 3) 2 +6H 2 O+2CH 3 COONa

Азид гидразинникеля (II)

Комплексный азид никеля представляет собой зеленый поликристаллический продукт. Технический продукт не гигроскопичен, нерастворим в воде. В Китае разработана опытно-промышленная технология получения комплексного азида никеля, позволяющая безопасно получать до 5 кг продукта за одно осаждение. Испытания ЭД, содержащих в качестве первичного заряда азид гидразинникеля (II), показали, что они по надежности не уступают штатным ЭД и могут использоваться в горнодобывающей промышленности.

Заключение

Существуют множество ИВВ, в которых нет свинца и ртути, но в наше время они имеют не такое широкое применение (не могут являться штатными) из-за различных недостатков. Но в некоторых случаях они имеют больше достоинств, и их применение является наиболее выгодным и целесообразным. В заключение следует сказать, что во всем мире стремятся найти малотоксичные энергонасыщенные вещества.

Например, вещество СР предложено к использованию в электродетонаторах. Однако комплекс токсичен, что препятствует его широкому применению. Широкому использованию 2,4 - динитродиазобензолперхлората мешают два существенных недостатка: гигроскопичность, технический продукт перепрессовывается. ДДНФ как ИВВ имеет следующие недостатки: перепрессовывается, у него недостаточно высокая термостойкость, соединение быстро темнеет на солнечном свету, к тому же стимулирует иммунный ответ, который способствует развитию аллергического синдрома.

Список использованной литературы

1. Илюшин М.А. Энергонасыщенные вещества для средств инициирования: учебное пособие/ М.А. Илюшин, И.В. Целинский, А.А. Котомин, Ю.Н. Данилов - СПб.: СПбГТИ(ТУ) - 2013 -177 с.

Илюшин М.А. Металлокомплексы в высокоэнергетических композициях (монография)/под ред. И.В. Целинского/ М.А. Илюшин, А.М. Судариков, И.В. Целинский и др. - СПб.: ЛГУ им А.С. Пушкина, 2010. - 188 с.

3. Лоскутова Л.А. Чувствительность энергетических материалов к детонационному импульсу: методические указания/ Л.А. Лоскутова, М.А. Илюшин, А.В. Смирнов, И.В. Бачурина - СПб.: СПбГТИ(ТУ), 2011. - 23c.

Лоскутова Л.А. Температура вспышки конденсированных энергоемких веществ: методические указания/ Л.А. Лоскутова, А.С. Козлов, М.А. Илюшин, И.В. Бачурина - СПб.: СПбГТИ(ТУ), 2007. - 20 с.

Лоскутова Л.А. Чувствительность твердых взрывчатых систем к механическим воздействиям: методические указания/ Л.А. Лоскутова, А.С. Козлов - СПб: СПбГИ(ТУ), 2007 - 22 с.