Что y хромосома. Мужские хромосомы

Y-хромосома может быть символом мужественности, но, по словам современных ученых, это не самое устойчивое и даже не самое необходимое собрание генов в организме млекопитающих.

Определитель половой принадлежности

Несмотря на то что Y-хромосома несет в себе «основной определитель пола», или ген SRY, который определяет, будет эмбрион развивать мужские половые признаки или нет, кроме SRY-гена, в Y-хромосоме больше нет никаких жизненно необходимых генов, которых нет в Х-хромосоме. Соответственно, Y-хромосома является единственной хромосомой, не необходимой для жизни. Женщины, в конце концов, прекрасно выживают с двумя Х-хромосомами.

Темп вырождения

Кроме того, Y-хромосома быстро ослабевает, словно увядая со временем. Из-за этого у женщин две совершенно нормальные, здоровые X-хромосомы, а у мужчин одна полноценная X-хромосома и «высохшая» в процессе эволюции Y-хромосома.

Если этот темп вырождения будет поддерживаться на нынешнем уровне, у Y-хромосомы в запасе всего четыре с половиной миллиона лет. По прошествии этого времени ученые предсказывают возможное вырождение этой хромосомы.

Этот период может показаться очень продолжительным, но это не совсем так, особенно если учесть, что жизнь на Земле существовала в течение трех с половиной миллиардов лет.

Генетическая рекомбинация

Y-хромосома не всегда была вырождающейся и ненужной частью кода ДНК. Если взглянуть на положение вещей 166 миллионов лет назад, к моменту эволюции самых первых млекопитающих, положение «мужской» хромосомы полностью отличалось.

Ранняя «прото-у-хромосома» была первоначально того же размера, что и х-хромосома, и содержала набор тех же самых генов. Однако у Y-хромосомы есть один фундаментальный недостаток. В отличие от всех других хромосом, которых у нас по две копии в каждой из клеток, Y-хромосомы присутствуют там в единственном экземпляре и передаются от отцов сыновьям.

Это означает, что гены, содержащиеся в Y-хромосоме, не подвергаются генетической рекомбинации, своеобразной «перетасовке» генов, которая происходит в каждом поколении и помогает устранить разрушительные генные мутации.

Лишенные выгоды «рекомбинации», гены Y-хромосомы со временем ухудшаются и в конечном счете исключаются их генома.

Защитные механизмы

Несмотря на это, недавнее исследование показало, что гены Y-хромосомы разработали действенные защитные механизмы, направленные на замедление генетической деградации.

Например, недавнее датское исследование, опубликованное в PLoS Genetics, было сосредоточено на детальном изучении генетического кода Y-хромосом 62 различных участников. Ученые пришли к выводу, что Y-хромосома регулярно подвергается крупномасштабным структурным перестановкам, направленным на «амплификацию гена» - многочисленное копирование здоровых генов, ответственных за образование спермы. Эта «амплификация» смягчает генную потерю в Y-хромосоме.

Генетические палиндромы

Исследование также показало, что Y-хромосома развила необычные генетические структуры, названные палиндромами (последовательности ДНК, которые читаются одинаково с обоих концов, как слово «топот», например). Генетические палиндромы защищают Y-хромосому от дальнейшей деградации. Фактически палиндромные последовательности ДНК способны «конвертировать» гены, то есть восстанавливать поврежденные гены, используя неповрежденную резервную копию в качестве шаблона.

Рассматривая другие разновидности Y-хромосом, например, у других млекопитающих и некоторых других видов, ученые пришли к выводу, что амплификация генов Y-хромосомы является общим принципом для представителей различных видов.

Научные дебаты

По вопросу о том, исчезнет ли Y-хромосома со временем, или же сумеет разработать достаточные защитные механизмы, научное сообщество разделяется на два лагеря. Одна группа настаивает на том, что механизмы защиты отлично справляются с защитой хромосомы, другая утверждает, что эти процессы могут лишь ненадолго отложить неизбежное - полное исчезновение Y-хромосомы из генетического кода живых организмов. Дебаты по этому поводу продолжаются и не собираются утихать.

Исчезновение

Ведущий сторонник аргумента в пользу исчезновения Y-хромосомы, Дженни Грэйвс из Университета La Trobe в Австралии, утверждает, что в долгосрочной перспективе Y-хромосомы обречены, даже если им удастся продержаться немного дольше, чем ожидалось.

В статье 2016 года она указывает, что японские колючие крысы и полевки полностью потеряли свои Y-хромосомы. Она утверждает, что процессы потери генов Y-хромосомы неизбежно приводят к проблемам оплодотворения, что, в свою очередь, может стимулировать формирование совершенно новых видов.

Что ждет мужчин?

Как утверждают ученые, даже если Y-хромосома у людей исчезнет, это не означает, что с ней исчезнут и мужчины. Даже у тех видов животных, у которых нет Y-хромосомы, все же существует разделение на самцов и самок и происходит естественное оплодотворение и размножение.

В этих случаях ген SRY, который определяет принадлежность к мужскому полу, переходит на другую хромосому, означая, что со временем у мужчин может полностью пропасть необходимость в Y-хромосоме. Однако новая определяющая пол хромосома - та, куда перешел ген SRY, должна будет подвергнуться тому же медленному процессу вырождения из-за того же самого отсутствия перекомбинации, которое и обрекало на деградацию Y-хромосому.

Искусственные методы оплодотворения

В то время как Y-хромосома необходима для нормального человеческого воспроизводства, в ней нет больше никаких полезных и необходимых для существования генов. Получается, что если использовать современные искусственные методы оплодотворения, то в Y-хромосоме полностью отпадает необходимость.

Это означает, что генная инженерия может в скором времени заменить функцию гена Y-хромосомы, позволяя однополым парам женского пола или бесплодным мужчинам получить потомство. Однако, даже если бы для всех стало возможным забеременеть таким образом, очень маловероятно, что большинство здоровых людей просто прекратят рожать детей традиционным способом, перейдя на искусственное оплодотворение.

Хоть судьба Y-хромосомы представляет собой интересную и горячо обсуждаемую область генетического исследования, волноваться пока не стоит. Мы даже не знаем, исчезнет ли Y-хромосома вообще. Вполне возможно, ее гены сумеют найти способ защитить себя от вырождения и все останется так, как было.

Мужчина – разрушитель и творец одновременно, охотник и жертва, властитель и раб своей сути. Чего он заслуживает – любви или ненависти? Кто он и зачем пришел в этот мир? Могла ли природа обойтись без мужчин? Зачем нужны мужчины?

В этой книге приоткрыта завеса многих тайн мужского «Я». Оказывается, мужской пол необходим нам. Он – двигатель эволюции и научно-технического прогресса, истории и культуры. Возможно, что без мужчин мы так и остались бы всего лишь обезьянами, научившимися прямо ходить. Эта книга станет для вас источником не только интересной, но и полезной информации и поможет взглянуть на мужчин чуть-чуть иначе.

Книга:

<<< Назад
Вперед >>>

Говорят, что когда-то, очень-очень давно, когда жизнь на нашей планете была представлена только простейшими, все до единого микроорганизмы несли в себе только Х-хромосомы и никакого мужского пола не предполагалось. Он попросту был не нужен: все размножались делением и особо не грузились такой мелочью, как гендерная идентификация. Но потом произошла чудовищная мутация. Одна из Х-хромосом лишилась одного из четырех кончиков. То ли он просто потерялся, то ли два кончика срослись в один – непонятно. Получилась хромосома-инвалид, по форме напоминающая букву Y. Инвалид был микроскопически мал и передвигался в воде с помощью своих примитивных ресничек, тем не менее выжил и даже сумел наплодить себе подобных носителей таких ущербных хромосом. Так появился первый мужчина.

За все время своего существования, а если быть точнее, за 166 миллионов лет, Y-хромосома почему-то так и не эволюционировала в нечто более прекрасное.


Мужчина на генетическом уровне: Х– и Y-хромосомы , отвечающие за формирование мужского пола у большинства живых существ

Мало того, путешествуя во времени, она еще и лишилась 1393 из имевшихся в ней изначально 1438 генов. Впоследствии, правда, обездоленный Y кое-что поднакопил, и сейчас в составе хромосомы целых 78 генов, то есть в 18 (!) раз меньше, чем должно быть. Поэтому некоторые ученые оскорбительно называют мужскую гамету «почти полностью деградировавшей Х-хромосомой». Эти же некоторые ученые, подсчитав скорость потери генов Y-хромосомы, утверждают, что примерно через 125 тысяч лет несчастное недосущество окончательно деградирует, девальвирует, дезактивируется и навсегда исчезнет с лица Земли. Мужской пол опять растворится в эволюционных дебрях. Наверное, эти ученые – женщины.

Случается, отдельные слабые голоса в научном мире женщинам возражают и говорят: нет, мол, ничего подобного. Мы вот тут изучили хромосомы шимпанзе и со всей ответственностью заявляем: ничего никто не терял, все так и должно быть. И никуда хромосома исчезать не собирается, а так и будет существовать – да! – в таком виде! Нравится вам это или нет. Что-то нам подсказывает, что эти голоса принадлежат мужчинам.

Считается, что все генетически полезное для мужского пола накапливается в этой хромосоме и что она же собирает все то, что генетически вредно для женского пола (интересно, что вообще можно собрать с таким количеством генов?).

Y-хромосома – самая маленькая из всех человеческих хромосом, причем ее размер может сильно отличаться у разных мужчин. Она практически не способна к рекомбинированию – спонтанному соединению с другими хромосомами. Из всех 78 генов только 3 могут свободно перетасовываться в генетической колоде, что делает возможным с большой точностью определять предка по отцовской линии. И поэтому животноводы, подбирая пару производителей, следуют принципу превосходства мужской особи. Говоря простым языком, с точки зрения породы, более правильным должен быть кобель, а не сучка, жеребец, а не кобыла, кот, а не кошка. Это правило было известно с древнейших времен, и люди всегда стремились подобрать своим коровам, овцам и лошадям производителей, превосходящих самок по качествам.

Изменчивость неспособных к рекомбинации 75 генов Y-хромосомы обеспечивается только за счет мутаций. Другими словами, 95 % этой хромосомы представляют собой своего рода летопись всех мутаций, произошедших у данного вида животных. Генетическая информация по линии отца передается потомству в более устойчивом виде.


Подбирая пару производителей, животноводы предъявляют более высокие требования к мужской особи, нежели к женской

Соответственно, чем лучше отец, тем лучше потомство, чем хуже качества отца, тем хуже потомки. Но оставшиеся 5 % способных к рекомбинации генов дают нам такой богатый генетический материал, что это оправдывает все издержки, связанные с существованием мужского пола.

Самец может наделать сколько угодно детенышей, в отличие от самок, которые в количестве потомства сильно ограничены. Таким образом, у самцов возможности передачи новых генов значительно выше, чем у самок, поэтому мутации у мужского пола имеют большее значение для популяции, чем женские мутагенные изменения.

В настоящее время генетики нашли в Y-хромосоме около 160 единиц, способных изменяться. Почти 60 миллионов пар нуклеотидов этой хромосомы образуют хромосомные линии, которые по своей сути сходны с линиями молекулы ДНК, передающейся от яйцеклетки. Однако в ДНК присутствуют только точечные мутации, в то время как Y-хромосома с ее генетическими накоплениями – настоящий банк всевозможных изменений, хранимых ею практически все время своего существования. Поэтому Y-хромосома куда более ценна с точки зрения эволюции, чем Х-хромосома. Мало того, как выяснилось, Y-хромосома научилась противостоять деградации. Ее нуклеотидный состав симметричен, он состоит из двух одинаковых частей, расположенных зеркально относительно друг друга. Чтобы это было более понятно, приведем пример палиндрома в виде набора букв: АБААБА. Если это сочетание букв разделить на две части по средней линии, то мы получим зеркальную симметрию – палиндром.

Непарность Y-хромосомы – вот основа эволюции. Если у женщины одна из Х-хромосом каким-то образом изменилась, то вторая Х-хромосома, генетический близнец пострадавшей, будет противостоять мутации и сведет ее проявления к минимуму. А у мужчин хромосомы-дублера нет. Подсчитано, что у каждого мужчины в Y-хромосоме содержится не менее 600 нуклеотидов, отличающих его генотип от генотипа отца, – это в тысячи раз больше вариантов наследственности, чем может обеспечить естественная мутация.

Конечно, это не всегда дает только положительный результат. Непарность Y-хромосомы приносит и гнилые плоды. Существуют наследственные заболевания, которыми болеют только мужчины или преимущественно мужчины, а женщины, оставаясь здоровыми, всего лишь носительницы этого заболевания.

Самый известный пример – гемофилия, или несвертываемость крови. «Неправильный» ген передается от матери к сыну, но сама мать при этом остается здоровой. Женщина заболеет только в том случае, если у нее дефектный ген появится в обеих Х-хромосомах.

Такая же печальная история с дальтонизмом – особенностью цветового зрения у людей и приматов, при котором дальтоник полностью или выборочно не различает цветов. Женщины-дальтоники встречаются в 20 раз реже, чем мужчины, хотя носитель дальтонического гена – женский пол.

Конечно, у мужчин не вырастает третья рука или вторая голова. Эти мутации гораздо менее заметны, поскольку спрятаны глубоко в генах, и в крайних случаях могут быть обнаружены при серьезных медицинских исследованиях. У мужчин куда чаще, чем у женщин, обнаруживаются отклонения в строении тела, например дополнительная мышца или нестандартное развитие кровеносной системы. Это не просто ошибка природы. Природа экспериментирует, проверяя все возможные вариации – а вдруг такой финт будет полезен будущим поколениям?


Дарвин отмечал, что многопалость (полидактилия) у мужчин встречается в полтора раза чаще

При благоприятных условиях те, кто не имеет мутаций, и те, кто их имеет, размножаются одинаково. Но если условия окружающей среды резко меняются, то уже буквально во втором поколении выясняется, кто чего стоит и насколько оправданно нововведение. Если мутация удачная, то ее носитель закрепит себя в потомках. Если неудачная, то носитель погибнет, прекратив передачу нового гена последующим поколениям.

Конечно, у человека эволюция происходит не с такой скоростью, как у животных. Мы приносим куда меньше потомства и создаем для себя максимально комфортные условия для выживания. Но механизм работы Y-хромосомы теперь вполне понятен. Мужской пол – своего рода экспериментальный материал и кладовая новых генетических комбинаций. Мужскому полу теперь до скончания века приходится на своей шкуре отрабатывать все эволюционные новшества, а женскому – сохранять и преумножать лучшее.

Разделение на два пола – это и есть та самая специализация, то самое разделение труда, которое жизненно необходимо для наилучшего выполнения глобальной задачи всего живого: эволюционировать. Гермафродитизм в этом отношении невыгоден тем, что его носители ведут себя одинаково, у них стерты различия в полоролевом поведении и предназначении. У них нет выраженных самцов и самок, они представляют собой усредненное нечто и ведут себя одинаково. Соответственно, у них нет и разделения труда, и со своей сверхзадачей они справляются значительно хуже.


За то, что мы все такие разные, мы должны благодарить Y-хромосому

Наконец, именно двуполому размножению мы обязаны своей личной индивидуальностью. За то, что на земле нет двух одинаковых людей, мы должны благодарить Y-хромосому. Спасибо вам, мужчины!

<<< Назад
Вперед >>>

Вы, может быть, помните, что мы говорили о том, что хромосомы мужчины и женщины отличаются. Женщины имеют 24 совершенные пары хромосом, включая две Х-хромосомы. Мужчины имеют 23 совершенные пары и одну несовершенную пару. Несовершенная пара состоит из Х-хромосомы и чахлой Игрек-хромосомы. Y-хромосома несет не много генов (если вообще несет), и это - источник больших неприятностей для мужского пола.

Ген, расположенный на 24-й паре хромосом, отвечает за способность человеческого глаза различать красный и зеленый цвета. Несовершенный аллель, принадлежащий к тому же самому гену, не способен управлять этим типом цветного зрения. Когда этот несовершенный ген - единственный ген, которым человек обладает, несущий его индивид не может отличить красный цвет от зеленого. Он является геном цветовой слепоты (дальтонизма). Давайте обозначим нормальный ген буквой N, а ген цветовой слепоты буквой С.

Мужчина, который не может отличить красный от зеленого, обладает геном С на одной хромосоме в его 24-й паре хромосом. Если бы он имел в дополнение к нему также и нормальный ген, все было бы прекрасно; но он его не имеет. Другая хромосома 24-й пары - Y-xpoмосома, которая не имеет ни одного аллеля этого гена, а возможно, и генов вообще. Давайте называть Y-хромосому просто Y для краткости.

Комбинация генов мужчины с цветовой слепотой, таким образом, CY.

Мужчина с цветовой слепотой произведет два вида клеток спермы. Одна группа клеток получит нормальную 24-ю хромосому, несущую ген цветовой слепоты. Это будет клетка спермы тина С. Другая группа получит Y-хромосому вообще без какого-либо гена цветного зрения. Это будет клетка спермы Y. Обе клетки спермы, конечно, будут сформированы в равных количествах.

Затем мы предположим, что этот человек женится на женщине С нормальным цветным зрением. Обе хромосомы ее 24-й пары имеют нормальный ген; так что она - NN. Все ее яйцеклетки в этом отношении те же самые. Все имеют нормальный ген N.

Как будут сформированы оплодотворенные яйцеклетки? Или клетка спермы С оплодотворяет N-яйцеклетку, или клетка спермы Y оплодотворяет N-яйцеклетку. Оплодотворенные яйцеклетки будут все или NC, или NY.

Вы, возможно, помните из предыдущей главы, что оплодотворенная яйцеклетка, содержащая Y-хромосому, всегда развивается в мужчину. Все оплодотворенные яйцеклетки NY развиваются в мальчиков. Мы видим, что, когда мужчина с цветовой слепотой имеет сыновей от нормальной жены, все они нормальны. Ни один из них вообще не имеет гена цветовой слепоты; и ген цветовой слепоты, соответственно, не может проявиться среди их потомков.

Когда оплодотворенная яйцеклетка не имеет Y-хромосомы, она всегда развивается в женщину. Все дети NC поэтому девочки, и все девочки - гетерозиготны. К счастью, нормальный ген является доминирующим но отношению к гену цветовой слепоты. По этой причине дочери мужчины с цветовой слепотой и нормальной женщины могут видеть цвета совершенно нормально. Однако, в отличие от сыновей от этого брака, дочери обладают геном цветовой слепоты и могут передать его своим детям.

Предположим, например, что одна из этих гетерозиготных девочек (NC) в конечном счете выходит замуж за нормального мужчину с одним хорошим геном цветного зрения и конечно же с одной Y-хромосомой (NY). Что случается дальше? Девушка производит два типа яйцеклеток, один тип - N и другой - С, равного количества. Мужчина производит два типа клеток спермы, один тип - N и другой - Y, равного количества.

Возможными оплодотворенными яйцеклетками тогда будут NN, NC, NY и CY. Дочери этого брака будут без Y-хромосомы. Они будут или NN или NC. NN-девочки будут совершенно нормальны. NC-девочки видят цвет совершенно так же, но они - гетерозиготны. Они обладают геном цветовой слепоты.

Мальчики от этого брака будут иметь Y - xpoмосому. Они будут или NY, или CY. Мальчики NY будут совершенно нормальны. Мальчики CY будут больны цветовой слепотой.

Этот процесс может продолжаться в следующих поколениях. Всегда именно мальчик будет страдать цветовой слепотой, и практически никогда ее не будет иметь девочка. Однако именно девочка, а не мальчик будет передавать своим детям ген цветовой слепоты.

Возможно, конечно, что и девочка может страдать ^цветовой слепотой, если случится так, что она будет иметь сразу два гена цветовой слепоты (СО. Это может произойти, если мужчина с цветовой слепотой женится на женщине, отец которой страдал цветовой слепотой и которая, таким образом, является носителем гена цветовой слепоты. Тогда имеется равный шанс, что девочка, рожденная от этого брака, будет страдать цветовой слепотой. Такие случаи известны, но они очень редки. (Все сыновья женщины, страдающей цветовой слепотой, будут страдать цветовой слепотой, независимо от того, за кого она выйдет замуж. Можете ли вы самостоятельно рассчитать это?)

Всякий раз, когда характеристика, подобная гену цветовой слепоты, проявляется только у одного иола, а не у другого, она, как говорят, связана с полом.

Другая связанная с полом характеристика, о которой вы, возможно, слышали, - гемофилия. Это состояние, когда кровь по некоторым причинам не способна свертываться. Даже небольшой порез может быть роковым для человека, страдающего этой болезнью, поскольку без специального лечения кровотечение не остановится.

Гемофилия наследуется тем же самым способом, что и дальтонизм. С очень редкими исключениями только мужчины болеют ею, но только женщины передают ее своим детям.

Кстати, о гемофилии. Королева Виктория, возможно, была гетерозиготной именно в отношении гена гемофилии. Так как нормальный ген свертываемости крови является доминантным по отношению к гену гемофилии, мы не можем быть в этом уверенными точно. Ее кровь свертывалась нормально. Однако гемофилия неожиданно возникла у ее потомков мужского пола. Сын российского царя Николая II (жена которого была одной из внучек Виктории) страдал гемофилией. Гемофилия была и у старшего сына короля Испании Альфонса XIII (чья жена была одной из внучек Виктории). Нам, однако, представится случай вновь упомянуть королеву Викторию в следующей главе.


| |

Лишняя хромосома у мальчиков, синдром XYYэто группа симптомов, которая поражает мужчин. У некоторых признаки едва заметны. Общие проявления включают в себя трудности обучения, задержку речи, низкий мышечный тонус (гипотония).

Вызван дополнительной копией Y хромосомы в каждой клетке тела, возникает случайно, не наследуется. Диагноз может быть сделан на основании пренатальных тестов, или в детстве, зрелом возрасте, если у мужчины есть симптомы заболевания.

Лечение включает специальное образование, терапию при задержках развития.

Другие имена:

  • 47, синдром XYY;
  • Синдром Иакова;
  • XYY-кариотип;
  • Синдром YY.

Хyy синдром- редкое хромосомное расстройство. Мужчины обычно имеют одну Х и Y-хромосому. Однако у людей с этим синдромом есть одна Х и две Y. Затронутые люди обычно очень высокие. В подростковом возрасте многие имеют значительную угревую сыпь.

Дополнительные симптомы:

  • проблемы с обучением;
  • поведенческие трудности, такие как импульсивность.

Интеллект обычно находится в нормальном диапазоне, хотя IQ в среднем на 10-15 баллов ниже, чем у здоровых людей.

В прошлом было много неправильных представлений об этой болезни. Ее иногда называли супер-мужским заболеванием, потому что люди с этим расстройством считались чрезмерно агрессивными, не имели сочувствия. Недавние исследования показали, что это не так.

Хотя мальчики с Лишней хромосомой имеют трудности при обучении и поведенческие проблемы, они не чрезмерно агрессивны, не подвергаются повышенному риску серьезного психического заболевания. Поскольку есть более высокий риск развития инвалидности (интеллектуальной), рекомендуется воспользоваться речевой терапией, специальным, корректирующим обучением.

Первые годы обучения в школе могут быть более сложными для мальчиков с синдромом XYY, но они обычно продолжают вести полноценную, здоровую, нормальную жизнь.


Симптомы

Симптомы при наличии лишней хромосомы могут варьироваться от едва заметных до более серьезных. Считается, что некоторые мужчины с никогда не бывают диагностированы, потому что признаки не заметны.

Для других обычен: низкий мышечный тонус (гипотония), задержка речи (в позднем младенчестве, раннем детстве). Некоторые мальчики с синдромом XYY испытывают трудности по некоторым предметам в школе, таким как чтение, письмо.

Обычно нет интеллектуальной недееспособности, хотя среднее IQ на 10-15 баллов ниже чем у обычного человека.

Другие признаки: астма; проблемы с зубами; тяжелые кистозные угри в подростковом возрасте. У мальчиков с расстройством обычно нет физических особенностей, отличных от большинства людей, но они могут быть выше, чем ожидалось.

Некоторые мужчины с лишней хромосомой имеют поведенческие различия, такие как расстройство спектра аутизма (обычно на более мягком уровне) или синдром дефицита внимания с гиперактивностью (ADHD). Существует повышенный риск возникновения тревожных расстройств или расстройств настроения.


Большинство проходят нормальное половое развитие. Однако у некоторых может развиться протекание яичка (когда яички не производят сперму или тестостерон), что приводит к проблемам бесплодия.

В некоторых случаях у затронутых людей возникают такие поведенческие проблемы, как взрывной характер, гиперактивность, импульсивность, вызывающие действия, антиобщественное поведение.

Ниже перечислены симптомы, которые могут иметь люди с этой болезнью.

Медицинские термины Другие имена

80% -99% показывают признаки

Отсроченная речь, ЗРР
Низкопосаженные уши
Задержка моторного развития

Наблюдается у 30% -79%

Удушье
Синдром дефицита внимания и гиперактивности Недостатки внимания
Врожденная ночная слепота
Пальцы клинодактильно
Гипертелоризм Широко расставленные глаза
Нарушение социальных взаимодействий Плохие социальные навыки
Импульсивность
Интеллектуальная недееспособность Умственная отсталость
Макроцефалия Увеличенный размер черепа
Неонатальная гипотония Низкий мышечный тонус в неонатальном периоде
Конкретная обучающая инвалидность

5% -29% людей имеют симптомы

Аномальная форма ствола мозга
Азооспермия Отсутствие спермы
Дисфункции мозжечка
Крипторхизм Неопущенные семенники
Дисгенезис мозжечка
Гидроцефалия Много спинномозговой жидкости в мозге
Гипоспадии
Увеличение уровня гонадотропина
Повышенный уровень тестостерона
Macroorchidism Большие яички
Мужское бесплодие
Микропенис Короткий пенис
Oligospermia Низкое количество сперматозоидов
Судороги Припадки
Варикоцеле

Существует достаточно обоснованная гипотеза, что мужская Y-хромосома медленно, но верно деградирует. Это уже стало предметом шуток в СМИ. Обложка журнала Vertigo.
Источник: media.comicvine.com

Большинство из нас знают, что рождение мальчика обусловлено попаданием в яйцеклетку спермия с половой хромосомой Y («игрек»), несущей в своем коротком плече ген мужского пола SRY – Sex Region Y. Ген определяет развитие семенных желез, или тестикулов со сперматогониями с находящимися в них стволовыми клетками, при делении которых образуются спермии. Жизнеспособность стволовых клеток поддерживает особый протеин (NANOS), способный связывать РНК. Выключение гена этого белка приводит у мышей к недоразвитию тестикулов и бесплодию самцов. Повышенная же активность гена увеличивает число стволовых клеток, способных к само(воз)обновлению.

Оплодотворение спермием с женской хромосомой Х («икс») ведет к рождению девочки. Ген SRY может мутировать, и тогда рождается девочка с набором ХY; или (транслоцироваться) «перескочить» на хромосому X, в результате – рождается мальчик с хромосомами ХХ. Девочка может родиться и при отсутствии второй Х-хромосомы (ХО, или синдром Тернера). До самого последнего времени молекулярный механизм возникновения подобных состояний был неизвестен. Попытку раскрыть его предпринял Дэйвид Пэйдж из Массачусетского технологического института.

Все началось в 2003 году, когда он открыл палиндромы (так греки называли бег вспять, назад или слова, например «заказ», читающиеся одинаково с начала или конца). В ДНК палиндромы – это последовательности, одинаковые в обеих ее цепях. Оказалось, что в Y-хромосоме такие последовательности могут иметь длину до трех миллионов оснований, или «букв» ген-кода. Пэйдж предположил, что «мужские» палиндромы выполняют функцию защитного «буфера» против нежелательных мутаций.

Так, при анализе ДНК пациентов с синдромом Тернера было обнаружено, что палиндромы являются «ахиллесовой пятой», способствуя образованию «дицентрической» Y-хромосомы (то есть вариантов с двумя центромерами). Молекулярный анализ у более чем полусотни людей с дицентрическими Y-хромосомами выявил поразительную вещь: при оплодотворении спермием с мутантной Y-хромосомой, имеющей две близко расположенные центромеры, рождается мальчик. Однако увеличение расстояния между «центрами» повышает степень «феминизации» будущего организма. При этом длинная Y-хромосома может попросту ломаться (и исчезать в результате переваривания ферментами).

В результате в дочерних клетках остается только материнская Х-хромосома, что и приводит к рождению девочек с синдромом Тернера. Но среди пациентов Пэйджа были и мозаичные «химеры», родившиеся в результате неравномерного распределения клеток со сдвоенными Y-хромосомами или без них. У одного из таких пациентов врачи обнаружили тестикул и яичник! Ученый назвал подобную ситуацию «фантастическим экспериментом природы».

Синтия Мортон, редактор American J. of Human Genetics, написала, что это открытие является «еще одним прекрасным вкладом Пэйджа в генетику». По всей видимости, она имела в виду генетику определения пола у человека, нарушение которой приводит к рождению детей, про которых можно сказать словами поэта: «Родила царица в ночь не то сына, не то дочь».

Думается, что ее реакция была еще эмоциональнее, когда в самом начале января 2010 года она узнала о более значительном открытии Пэйджа в области биологии человека и близких ему приматов.

Оно было сделано в связи с завершением полного прочтения ДНК мужской половой хромосомы шимпанзе, что позволило сравнить ее с Y-хромосомой человека на молекулярном уровне. У шимпанзе за шесть миллионов лет параллельной эволюции произошло «драматическое обновление – реновация – и самая что ни на есть инвентаризация по сравнению с линией человека». Это хороший пример знаменитой эволюционной дивергенции, или расхождения, в результате которого Y-хромосома шимпанзе по сравнению с человеческой сохранила лишь две трети генов, причем на долю генов, отвечающих за синтез протеинов, у обезьяны приходится всего лишь 47% от человеческих.

В очередной раз получил подтверждение тезис о неравномерности эволюционного развития, на этот раз на молекулярном уровне. Подтверждением еще одного теоретического положения является то, что в Y-хромосоме концентрируются главным образом гены, отвечающие за продукцию мужских половых клеток, что обеспечивает успех в воспроизводстве потомков. Немаловажно также и то, что тестикулы шимпанзе имеют значительно большие размеры, нежели у человека. Хорошо известно, что самки братьев наших меньших полиандричны, то есть совокупляются в рецептивный период со многими представителями сильного пола, в результате чего «побеждает» сперма наиболее вирильного самца, победившая в войне сперм (знаменитые sperm wars, известные, начиная с дрозофилы).

Пэйдж даже вынужден был признать несколько разочарованно: «Мы проводили расшифровку последовательностей ДНК в надежде понять, почему мы говорим, творим искусство и сочиняем поэзию, однако наиболее выраженным отличием двух видов оказалось производство спермы». Ученого понять можно. Мы все торопимся понять, чем же мы уникальны в этом мире, забывая о том, что мы часть биологии этого мира.