Решение простых линейных уравнений. Как решается система уравнений? Методы решения систем уравнения


Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

Какое уравнение будет называться уравнением с двумя переменными?

Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

Уравнение с двумя неизвестными может:

а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

Разложение на множители

Пример 1.

Решить уравнение: xy – 2 = 2x – y.

Решение.

Группируем слагаемые с целью разложения на множители:

(xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Имеем:

y = 2, x – любое действительное число или x = -1, y – любое действительное число.

Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

Равенство нулю неотрицательных чисел

Пример 2.

Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

Решение.

Группируем:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

(3x – 2) 2 + (2y – 3) 2 = 0.

Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

А значит, x = 2/3 и y = 3/2.

Ответ: (2/3; 3/2).

Оценочный метод

Пример 3.

Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Решение.

В каждой скобке выделим полный квадрат:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

(x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

(x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

Ответ: (-1; 2).

Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

Пример 4.

Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

Решение.

Решим уравнение как квадратное относительно x. Найдем дискриминант:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

Ответ: (3; 4).

Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

Пример 5.

Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

Решение.

Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

Ответ: нет корней.

Пример 6.

Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Решение.

Выделим полные квадраты в каждой скобке:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

Ответ: (2; -3) и (-2; -3).

Пример 7.

Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

Решение.

Выделим полные квадраты:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

(x – y) 2 = 36 и (y + 2) 2 = 1

(x – y) 2 = 1 и (y + 2) 2 = 36.

Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Ответ: -17.

Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Что такое уравнение?

Уравнение – одно из краеугольных понятий всей математики. Как школьной, так и высшей. Имеет смысл разобраться, правда? Тем более, что это очень простое понятие. Ниже сами убедитесь. :) Так что же такое уравнение?

То, что это слово однокоренное со словами «равный», «равенство», возражений, думаю, ни у кого не вызывает. Уравнение – это два математических выражения, соединённых между собой знаком равенства «=». Но… не каких попало. А таких, в которых (хотя бы в одном) содержится неизвестная величина . Или по-другому переменная величина . Или сокращённо просто «переменная». Переменных может быть одна или несколько. В школьной математике чаще всего рассматриваются уравнения с одной переменной. Которая обычно обозначается буквой x . Или другими последними буквами латинского алфавита - y , z , t и так далее.

Мы пока тоже будем рассматривать уравнения с одной переменной. С двумя переменными или более – в специальном уроке.

Что значит решить уравнение?

Идём дальше. Переменная в выражениях, входящих в уравнение, может принимать любые допустимые значения. На то она и переменная. :) При каких-то значениях переменной получается верное равенство, а при каких-то – нет. Решить уравнение – это значит найти все такие значения переменной, при подстановке которых в исходное уравнение получается верное равенство . Или, более научно, тождество . Например, 5=5, 0=0, -10=-10. И так далее. :) Или доказать, что таких значений переменной не существует.

Я специально акцентирую внимание на слове «исходное». Почему - будет ясно чуть ниже.

Эти самые значения переменной, при подстановке которых уравнение обращается в тождество, называются очень красиво - корнями уравнения . Если доказано, что таких значений нет, то в таком случае говорят, что уравнение не имеет корней .

Зачем нужны уравнения?

Для чего нам нужны уравнения? В первую очередь, уравнения – очень мощный и наиболее универсальный инструмент для решения задач . Самых разных. :) В школе, как правило, работают с текстовыми задачами . Это задачи на движение, на работу, на проценты и многие-многие другие. Однако применение уравнений не ограничивается одними лишь школьными задачками про бассейны, трубы, поезда и табуретки. :)

Без умения составлять и решать уравнения не решить ни одной сколь-нибудь серьёзной научной задачи - физической, инженерной или экономической. Например, рассчитать, куда попадёт ракета. Или ответить на вопрос, выдержит или не выдержит нагрузку какая-нибудь ответственная конструкция (лифт или мост, например). Или спрогнозировать погоду, рост (или падение) цен или доходов…

В общем, уравнение – ключевая фигура в решении самых разнообразных вычислительных задач.

Какие бывают уравнения?

Уравнений в математике несметное количество. Самых разных видов. Однако все уравнения можно условно разделить всего на 4 класса:

1) Линейные,

2) Квадратные,

3) Дробные (или дробно-рациональные),

4) Прочие.

Разные виды уравнений требуют и разного подхода к их решению: линейные уравнения решаются одним способом, квадратные – другим, дробные – третьим, тригонометрические, логарифмические, показательные и прочие – тоже решаются своими методами.

Прочих уравнений, разумеется, больше всего. Это и иррациональные, и тригонометрические, и показательные, и логарифмические, и многие другие уравнения. И даже дифференциальные уравнения (для студентов), где неизвестным является не число, а функция. Или даже целое семейство функций. :) В соответствующих уроках мы подробно разберём все эти типы уравнений. А здесь у нас – базовые приёмы, которые применимы для решения совершенно любых (да-да, любых!) уравнений. Называются эти приёмы равносильные преобразования уравнений . Их всего два. И нигде их не обойти. Так что знакомимся!

Как решать уравнения? Тождественные (равносильные) преобразования уравнений.

Решение любого уравнения заключается в поэтапном преобразовании входящих в него выражений. Но преобразований не абы каких, а таких, чтобы суть всего уравнения не менялась . Несмотря на то, что после каждого преобразования уравнение будет видоизменяться и в конечном счёте станет совсем не похоже на исходное. Такие преобразования в математике называются равносильными или тождественными . Среди всего многообразия тождественных преобразований уравнений выделяется два базовых . О них и пойдёт речь. Да-да, всего два! И каждое из них заслуживает отдельного внимания. Применение этих двух тождественных преобразований в том или ином порядке гарантирует успех в решении 99% всех уравнений.

Итак, знакомимся!

Первое тождественное преобразование:

К обеим частям уравнения можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной).

Суть уравнения при этом останется прежней. Это преобразование вы применяете всюду, наивно думая, что переносите какие-то члены из одной части уравнения в другую, меняя знак. :)

Например, такое крутое уравнение:

Тут и думать нечего: переносим минус тройку вправо, меняя минус на плюс:

А что же происходит в действительности? А на самом деле вы прибавляете к обеим частям уравнения тройку ! Вот так:

Суть всего уравнения от прибавления к обеим частям тройки не меняется. Слева остаётся чистый икс (чего мы, собственно, и добиваемся), а справа – что уж получится.

Перенос слагаемых из одной части в другую – это сокращённый вариант первого тождественного преобразования. Ошибиться здесь можно лишь в одном – забыть сменить знак при переносе. Например, такое уравнение:

Дело нехитрое. Работаем прямо по заклинанию: с иксами влево, без иксов – вправо. Какое слагаемое с иксом у нас справа? Что? 2x? Неверно! Справа у нас -2x (минус два икс)! Поэтому в левую часть это слагаемое перенесётся с плюсом :

Полдела сделано, иксы собрали слева. Осталось перенести единицу вправо. Опять вопрос – с каким знаком? Слева перед единицей ничего не написано – значит, подразумевается, что перед ней стоит плюс . Поэтому вправо единичка перенесётся уже с минусом :

Вот почти и всё. Слева приводим подобные, а справа – считаем. И получаем:

А теперь проанализируем наши махинации с переносом слагаемых. Что мы сделали, когда перенесли -2x влево? Да! Мы прибавили к обеим частям нашего злого уравнения выражение 2x. Я же говорил, что прибавлять (отнимать) мы имеем право любое число и даже выражение с иксом! Лишь бы одно и то же. :) А когда перенесли единичку вправо? Совершенно верно! Мы отняли от обеих частей уравнения единичку. Вот и всё.) Вот и вся суть первого равносильного преобразования.

Или такой пример – для старшеклассников:

Уравнение логарифмическое. Ну и что? Какая разница? Всё равно первым шагом делаем базовое тождественное преобразование – переносим слагаемое с переменной (то есть, -log 3 x) влево, а числовое выражение log 3 4 переносим вправо. Со сменой знака, разумеется:

Вот и всё. Кто дружит с логарифмами, тот в уме дорешает уравнение и получит:

Что? Хотите синусы? Пожалуйста, вот вам синусы:

Снова выполняем первое тождественное преобразование - переносим sin x влево (с минусом), а -1/4 переносим вправо (с плюсом):

Получили простейшее тригонометрическое уравнение с синусом, решить которое для знающих также не составляет труда.

Видите, насколько универсально первое равносильное преобразование! Встречается везде и всюду и не обойти его никак. Поэтому надо уметь его делать на автомате. Главное – не забывать менять знак при переносе! Продолжаем знакомиться с тождественными преобразованиями уравнений.)

Второе тождественное преобразование:

Обе части уравнения можно умножить (разделить) на одно и то же неравное нулю число или выражение.

Это тождественное преобразование мы тоже постоянно применяем, когда нам в уравнении мешают какие-то коэффициенты и мы хотим от них избавиться. Безопасно для самого уравнения. :) Например, такое злое уравнение:

Тут каждому ясно, что x = 3 . А как вы догадались? Подобрали? Или ткнули пальцем в небо и угадали?

Чтобы не подбирать и не гадать (мы с вами всё-таки математики, а не гадалки:)), нужно понять, что вы просто поделили обе части уравнения на четвёрку. Которая нам и мешает.

Вот так:

Эта палка с делением означает, что на четвёрку делятся обе части нашего уравнения. Вся левая часть и вся правая часть:

Слева четвёрки благополучно сокращаются и остаётся икс в гордом одиночестве. А справа при делении 12 на 4 получается, естественно, тройка. :)

Или такое уравнение:

Что делать с одной седьмой? Перенести вправо? Не-а, нельзя! Одна седьмая с иксом умножением связана. Коэффициент, понимаешь. :) Нельзя коэффициент оторвать и перенести отдельно от икса. Только всё выражение (1/7)x целиком. Но – незачем. :) Снова вспоминаем про умножение/деление. Что нам мешает? Дробь 1/7, не так ли? Вот и давайте избавимся от неё. Как? А в результате какого действия у нас пропадает дробь? Дробь у нас пропадает при умножении на число, равное её знаменателю! Вот и умножим обе части нашего уравнения на 7:

Слева семёрки сократятся и останется как раз одинокий икс, а справа, если вспомнить таблицу умножения, получится 21:

Теперь пример для старшеклассников:

Чтобы добраться до икса и тем самым решить наше злое тригонометрическое уравнение, нам надо сначала получить слева чистый косинус, безо всяких коэффициентов. А двойка мешает. :) Вот и делим на 2 всю левую часть:

Но тогда и правую часть тоже придётся разделить на двойку: это уже МАТЕМАТИКА требует. Делим:

Получили справа табличное значение косинуса. И теперь уравнение решается за милую душу.)

Всё понятно с умножением/делением? Отлично! Но… внимание! В данном преобразовании, несмотря на всю его простоту, кроется источник очень досадных ошибок! Называется он потеря корней и приобретение посторонних корней .

Выше я уже сказал, что обе части уравнения можно умножать (делить) на любое число или выражение с иксом . Но с одной важной оговоркой: выражение, на которое умножаем (делим) должно быть отлично от нуля . Именно этот пунктик, который многие поначалу просто игнорируют, и приводит к таким досадным промахам. Собственно, смысл этого ограничения понятен: на ноль умножать глупо, а делить вообще нельзя. Разберёмся, что к чему? Начнём с деления и с потери корней .

Допустим, есть у нас такое вот такое уравнение:

Здесь прямо-таки руки чешутся взять и поделить обе части уравнения на общую скобку (x-1):

Допустим, в задании на ЕГЭ сказано найти сумму корней этого уравнения. Что в ответ писать будем? Тройку? Если вы решили, что тройку, то вы попали в засаду . Под названием «потеря корней». :) В чём же дело?

А давайте в исходном уравнении раскроем скобки и соберём всё слева:

Получили классическое квадратное уравнение. Решаем через дискриминант (или через теорему Виета) и получаем два корня:

Стало быть, сумма корней равна 1+3 = 4. Четыре, а не три! Куда у нас «пропал» корень

x = 1

При первом способе решения? А единичка у нас пропала как раз во время деления обеих частей на скобочку (x-1). Почему так произошло? А всё потому, что при x = 1 у нас обнуляется эта самая скобочка (x-1). А делить мы имеем право только на отличное от нуля выражение! Как можно было бы избежать потери этого корня? И вообще потери корней? Для этого, во-первых, перед делением на какое-то выражение с иксом всегда дописываем условие, что это выражение отлично от нуля. И находим нули этого выражения . Вот так (на примере нашего уравнения):

А во-вторых, чтобы какие-то корни у нас не пропали в процессе деления, мы должны отдельно проверить в качестве кандидатов в корни все нули нашего выражения (того, на которое делим) . Как? Просто подставить их в исходное уравнение и посчитать. В нашем случае проверяем единичку:

Всё честно. Значит, единичка – корень!

А вообще, на будущее, всегда старайтесь избегать деления на выражение с иксом. Потеря корней – штука очень опасная и досадная! Применяйте любые другие способы – раскрытие скобок и особенно разложение на множители . Разложение на множители - самый простой и безопасный способ избежать потери корней. Для этого собираем всё слева, потом выносим общий множитель (на который так хотим «сократить») за скобки, раскладываем на множители и дальше приравниваем каждый получившийся множитель к нулю. Например, наше уравнение можно было бы вполне безобидно решить не только приведением к квадратному, но и разложением на множители. Смотрите сами:

Переносим влево всё выражение (x-1) целиком. Со знаком минус:

Выносим (x-1) за скобку как общий множитель и раскладываем на множители:

Произведение равно нулю, когда хотя бы один из множителей равен нулю . Приравниваем теперь (в уме!) каждую скобку к нулю и получаем наши законные два корня:

И ни один корень не потерялся!

Разберём теперь противоположную ситуацию – приобретение посторонних корней. Такая ситуация возникает при умножении обеих частей уравнения на выражение с иксом. Сплошь и рядом встречается при решении дробно-рациональных уравнений. Например, такое несложное уравнение:

Дело знакомое – умножаем обе части на знаменатель, чтобы избавиться от дроби и получить уравнение в линеечку:

Приравниваем каждый множитель к нулю и получаем два корня:

Вроде бы, всё хорошо. Но попробуем сделать элементарную проверку. И если при x = 0 у нас всё славненько срастётся, получится тождество 2=2, то при x = 1 получится деление на ноль. Чего делать нельзя категорически. Не годится единичка в качестве корня нашего уравнения. В таких случаях говорят, что x = 1 – так называемый посторонний корень . Единичка является корнем нашего нового уравнения без дроби x(x-1) = 0, но не является корнем исходного дробного уравнения. Как же появляется этот посторонний корень? Он появляется при домножении обеих частей на знаменатель x-1. Который при x = 1 как раз обращается в ноль! А мы имеем право умножать только на отличное от нуля выражение!

Как же быть? Вообще не умножать? Тогда мы совсем ничего решить не сможем. Каждый раз проверку делать? Можно. Но зачастую трудоёмко, если исходное уравнение слишком накрученное. В таких случаях спасают три волшебные буквы - ОДЗ. О бласть Д опустимых З начений. И чтобы исключить появление посторонних корней, при умножении на выражение с иксом всегда надо дополнительно записывать ОДЗ. В нашем случае:

Вот теперь при этом ограничении можно смело умножать обе части на знаменатель. Все вредные последствия от такого умножения (т.е. посторонние корни) мы исключим по ОДЗ. И нашу единичку безжалостно выкинем.

Итак, появление посторонних корней не так опасно, как потеря: ОДЗ – штука мощная. И жёсткая. Она нам всегда отсеет всё лишнее. :) Мы с ОДЗ будем дружить и подробнее познакомимся в отдельном уроке.

Вот и все тождественные преобразования.) Всего два. Однако у неопытного ученика могут возникать некоторые трудности, связанные с последовательностью их применения: в каких-то примерах начинают с домножения (или деления), в каких-то – с переноса. Например, такое линейное уравнение:

С чего начинать? Можно начать с переноса:

А можно сначала поделить обе части на пятёрку, а затем – переносить. Тогда числа попроще станут и считать будет легче:

Как видим, и так, и сяк можно. Вот и возникает у некоторых учеников вопрос: «Как правильно?» Ответ: «По-всякому правильно!» Кому как удобнее. :) Лишь бы ваши действия не противоречили правилам математики. А последовательность этих самых действий зависит исключительно от личных предпочтений и привычек решающего. Однако, с опытом такие вопросы отпадут сами собой, и в итоге не математика будет командовать вами, а вы – математикой. :)

В заключение хочу отдельно сказать о так называемых условно тождественных преобразованиях , справедливых при некоторых условиях . Например, возведение обеих частей уравнения в одну и ту же степень. Или извлечение корня из обеих частей. Если показатель степени нечётный, то ограничений никаких – возводите и извлекайте без опасений. А вот если чётный, то такое преобразование будет тождественным только если обе части уравнения неотрицательны . Об этих подводных камнях мы подробно поговорим в теме про иррациональные уравнения.

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.