Действия над событиями: сумма, произведение и разность событий. Противоположное событие


Правило сложения - если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.

^ Правило умножения - если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами.

Перестановка. Перестановкой множества из элементов называется расположение элементов в определенном порядке. Так, все различные перестановки множества из трех элементов - это

Число всех перестановок из элементов обозначается . Следовательно, число всех различных перестановок вычисляется по формуле

Размещение. Число размещений множества из элементов по элементов равно

^ Размещение с повторением. Если есть множество из n типов элементов, и нужно на каждом из m мест расположить элемент какого-либо типа (типы элементов могут совпадать на разных местах), то количество вариантов этого будет n m .

^ Cочетание. Определение. Сочетаниями из различных элементов по элементов называются комбинации, которые составлены из данных элементов по элементов и отличаются хотя бы одним элементом (иначе говоря, -элементные подмножества данного множества из элементов). butback="" onclick="goback(684168)">^ " ALIGN=BOTTOM WIDTH=230 HEIGHT=26 BORDER=0>


  1. Пространство элементарных событий. Случайное событие. Достоверное событие. Невозможное событие.
Пространство элементарных событий – любое множество взаимоисключающих исходов эксперимента, такое, что каждый интересующий нас результат может быть однозначно описан с помощью элементов этого множества. Бывает конечным и бесконечным(счетным и несчетным)

Случайное событие – любое подмножество пространства элементарных событий.

^ Достоверное событие – обязательно произойдет в результате эксперимента.

Невозможное событие – не произойдет в результате эксперимента.


  1. Действия над событиями: сумма, произведение и разность событий. Противоположное событие. Совместные и несовместные события. Полная группа событий.
Совместные события – если они могут произойти одновременно в результате эксперимента.

^ Несовместные события – если они не могут произойти одновременно в результате эксперимента. Говорят, что несколько несовместных событий образуют полную группу событий , если в результате эксперимента появится одно из них.

Если первое событие состоит из всех элементарных исходов, кроме тех, которые входят во второе событие, то такие события называются противоположными.

Сумма двух событий А и В – событие, состоящее из элементарных событий, принадлежащих хотя бы одному из событий А или В. ^ Произведение двух событий А и В – событие, состоящее из элементарных событий, принадлежащих одновременно А и В. Разность А и В – событие, состоящее из элементов А, не принадлежащих событию В.


  1. Классическое, статистическое и геометрическое определения вероятности. Основные свойства вероятности события.
Классическая схема: Р(А)=, n – число возможных исходов, m – число исходов, благоприятствующих событию А. татистическое определение: W(А)=, n – число произведенных экспериментов, m – число произведенных экспериментов, в которых появилось событие А. Геометрическое определение: Р(А)=, g – часть фигуры G.

^ Основные свойства вероятности: 1) 0≤Р(А)≤1, 2) Вероятность достоверного события равна 1, 3) Вероятность невозможного события равна 0.


  1. Теорема сложения вероятностей несовместных событий и следствия из нее.
Р(А+В) = Р(А)+Р(В). Следствие 1. Р(А 1 +А 2 +…+А к) = Р(А 1)+Р(А 2)+…+Р(А к), А 1 ,А 2 ,…,А к – попарно несовместны. Следствие 2 . Р(А)+Р(Ᾱ) = 1. Следствие 3 . Сумма вероятностей событий, образующих полную группу, равна 1.

  1. Условная вероятность. Независимые события. Умножение вероятностей зависимых и независимых событий.
Условная вероятность – Р(В), вычисляется в предположении, что событие А уже наступило. А и В независимые – если появление одного из них не меняет вероятность появления другого.

^ Умножение вероятностей: Для зависимых. Теорема. Р(А∙В) = Р(А)∙Р А (В). Замечание. Р(А∙В) = Р(А)∙Р А (В) = Р(В)∙Р В (А). Следствие. Р(А 1 ∙…∙А к) = Р(А 1)∙Р А1 (А 2)∙…∙Р А1-Ак-1 (А к). Для независимых. Р(А∙В) = Р(А)∙Р(В).


  1. ^ Т еорема сложения вероятностей совместных событий. Теорема . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления
P(A+B) = P(A) + P(B) - P(A∙B)

  1. Формула полной вероятности. Формулы Байеса.
Формула полной вероятности

Н 1, Н 2 …Н n – образуют полную группу – гипотезы.

Событие А может наступить только при условии появления Н 1, Н 2 …Н n ,

Тогда Р(А)=Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

^ Формула Байеса

Пусть Н 1, Н 2 …Н n – гипотезы, событие А может наступить при одной из гипотез

Р(А)= Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

Допустим, что событие А наступило.

Как изменилась вероятность Н 1 в связи с тем, что А наступило? Т.е. Р А (Н 1)

Р(А* Н 1)=Р(А)* Р А (Н 1)= Р(Н 1)* Р н1 (А) => Р А (Н 1)= (Р(Н 1)* Р н1 (А))/ Р(А)

Аналогично определяются Н 2 , Н 3 …Н n

Общий вид:

Р А (Н i)= (Р(Н i)* Р н i (А))/ Р(А) , где i=1,2,3…n.

Формулы позволяют переоценить вероятности гипотез в результате того, как становится известным результат испытаний, в итоге которого появилось событие А.

«До» испытания – априорные вероятности - Р(Н 1), Р(Н 2)…Р(Н n)

«После» испытания – апостериорные вероятности - Р А (Н 1), Р А (Н 2)… Р А (Н n)

Апостериорные вероятности, также как и априорные, в сумме дают 1.
9.Формулы Бернулли и Пуассона.

Формула Бернулли

Пусть проводятся n испытаний, в каждом из которых событие А может появиться или нет. Если вероятность события А в каждом из этих испытаний постоянна, то эти испытания независимы относительно А.

Рассмотрим n независимых испытаний, в каждом из которых А может наступить с вероятностью p. Такая последовательность испытаний называется схемой Бернулли.

Теорема: вероятность того, что при n испытаниях событие А произойдет ровно m раз, равна: P n (m)=C n m *p m *q n - m

Число m 0 – наступление события А называется наивероятнейшим, если соответствующая ему вероятность P n (m 0) не меньше других P n (m)

P n (m 0)≥ P n (m), m 0 ≠ m

Для нахождения m 0 используют:

np-q≤ m 0 ≤np+q

^ Формула Пуассона

Рассмотрим испытание Бернулли:

n- число испытаний, p – вероятность успеха

Пусть p мало (p→0), а n велико (n→∞)

среднее число появлений успеха в n испытаниях

λ=n*p → p= λдставим в формулу Бернулли:

P n (m)=C n m *p m *(1-q) n-m ; C n m = n!/((m!*(n-m)!) →

→ P n (m)≈ (λ m /m!)*e - λ (Пуассона)

Если p≤0,1 и λ=n*p≤10, то формула дает хорошие результаты.
10. Локальная и интегральная теоремы Муавра-Лапласа.

Пусть n- число испытаний, p – вероятность успеха, n велико и стремится к бесконечности. (n->∞)

^ Локальная теорема

Р n (m)≈(f(x)/(npg)^ 1/2 , где f(x)= (e - x ^2/2)/(2Pi)^ 1/2

Если npq≥ 20 – дает хорошие результаты, х=(m-np)/(npg)^ 1/2

^ Теорема интегральная

P n (a≤m≤b)≈ȹ(x 2)-ȹ(x 1),

где ȹ(x)=1/(2Pi)^ 1/2 * 0 ʃ x e (Pi ^2)/2 dt – функция Лапласа

х 1 =(a-np)/(npq)^ 1/2 , х 2 =(b-np)/(npq)^ 1/2

Свойства функции Лапласа


  1. ȹ(x) – нечетная функция: ȹ(-x)=- ȹ(x)

  2. ȹ(x) – монотонно возрастает

  3. значения ȹ(x) (-0.5;0.5), причем lim x →∞ ȹ(x)=0,5; lim x →-∞ ȹ(x)=-0,5
Следствия

  1. P n (│m-np│≤Ɛ) ≈ 2 ȹ (Ɛ/(npq) 1/2)

  2. P n (ɑ≤m/n≤ƥ) ≈ ȹ(z 2)- ȹ(z 1), где z 1=(ɑ-p)/(pq/n)^ 1/2 z 2=(ƥ -p)/(pq/n)^ 1/2

  3. P n (│(m/n) - p│≈ ∆) ≈ 2 ȹ(∆n 1/2 /(pq)^ 1/2)
m/n относительная частота появления успеха в испытаниях

11. Случайная величина. Виды случайных величин. Способы задания случайной величины.

СВ – функция, заданная на множестве элементарных событий.

X,Y,Z – СВ, а ее значение x,y,z

Случайной называют величину, которая в результате испытаний примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

СВ дискретна , если множество ее значений конечно или сочтено (их можно пронумеровать). Она принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной СВ может быть конечным или бесконечным.

СВ непрерывна , если она принимает все возможные значения из некоторого промежутка (на всей оси). Ее значения могут очень мало отличаться.

^ Закон распределения дискретной СВ м.б. задан:

1.таблицей


Х

х 1

х 2



х n

Р(Х)

р 1

р 2



p n

(ряд распределения)

Х=х 1 } несовместны

р 1 + р 2 +… p n =1= ∑p i

2.графический

Многоугольник распределения вероятности

3.аналитический

Р=Р(Х)
12. Функция распределения случайной величины. Основные свойства функции распределения.

Функция распределения СВ Х – функция F(Х), определяющая вероятность того, что СВ Х примет значение меньшее х., т.е.

x x = интегральная функция распределения

У непрерывной СВ функция непрерывная, кусочно дифференцируемая.

Алгебраические операции над событиями определяют правила действий с событиями и позволяют выражать одни события через другие. Операции над событиями применимы только для событий, представляющих подмножества одного и того же пространства элементарных событий.

Действия с событиями можно наглядно изобразить с помощью диаграмм Венна. В диаграммах событиям соответствуют различные области на плоскости, условно обозначающие подмножества элементарных событий, из которых состоят события. Так, на диаграммах рис.1.1 пространству элементарных событий соответствуют внутренние точки квадрата, событию А _ внутренние точки круга, событию В _ внутренние точки треугольника. То, что события А и В являются подмножествами пространства элементарных событий (А, В), изображено на диаграммах рис.1.1а,б.

Суммой (объединением) событий А и В называется событие С=А+В (или С=АВ), состоящее в том, что произойдет хотя бы одно из событий А или В. Событие С состоит из всех элементарных событий, принадлежащих по крайней мере одному из событий А или В, или обеим событиям. На диаграмме (рис 1.2.) событию С соответствует заштрихованная область С, представляющая объединение областей А и В. Аналогично суммой нескольких событий А 1 , А 2 ,…, А n называется событие С, состоящее в том, что произойдет хотя бы одно из событий А i , i=:

Сумма событий объединяет все элементарные события, из которых состоят А i , i=. Если события Е 1 , Е 2 ,…, Е n образуют полную группу, то их сумма равна достоверному событию:

Сумма элементарных событий равна достоверному событию

Произведением (пересечением) событий А и В называется событие С=АВ (или С=АВ), состоящее в совместном появлении событий А и В. Событие С состоит из тех элементарных событий, которые принадлежат и А, и В. На рис 1.3.а событие С представлено пересечением областей А и В. Если А и В - несовместные события, то их произведение - невозможное событие, т. е. АВ= (рис. 1.3.б).

Произведение событий А 1 , А 2 ,…, А n - это событие С, состоящее в одновременном выполнении всех событий А i , i=:

Произведения попарно несовместных событий А 1 , А 2 ,…, А n - невозможные события: А i А j =, для любого ij. Произведения событий, составляющих полную группу - невозможные события: Е i Е j =, ij, произведения элементарных событий - также невозможные события: ij =, ij.

Разностью событий А и В называется событие С=А_В (С=АВ), которое состоит в том, что происходит событие А и не происходит событие В. Событие С состоит из тех элементарных событий, которые принадлежат А и не принадлежат В. Диаграмма разности событий приведена на рис. 1.4. Из диаграммы видно, что С=А_В=

Противоположным событием для события А (или его дополнением) называется событие, которое состоит в том, что событие А не произошло. Противоположное событие дополняет событие А до полной группы и состоит из тех элементарных событий, которые принадлежат пространству и не принадлежат событию А (рис. 1.5). Таким образом, - это разность достоверного события и события А: =_А.

Свойства операций над событиями.

Переместительные свойства: А+В=В+А, А·В=В·А.

Сочетательные свойства: (А+В)+С=А+(В+С), (АВ)С=А(ВС).

Распределительное свойство: А(В+С)=АВ+АС.

Из определений операций над событиями следуют свойства

А+А=А; А+=; А+=А; А·А=А; А·=А; А·=

Из определения противоположного события следует, что

А+=; А=; =А; =; =; ;

Из диаграммы рис.1.4 очевидны свойства разности совместных событий:

Если А и В - несовместные события, то

Очевидны также свойства совместных событий

Для противоположных событий верны свойства, которые иногда называют правилом де Моргана или принципом двойственности: операции объединения и пересечения меняются местами при переходе к противоположным событиям

Доказательство принципа двойственности можно получить графически с помощью диаграмм Венна или аналитически, применив свойства 1-6

Следует обратить внимание на то, что действия, аналогичные действиям "приведение подобных членов" и возведения в степень в алгебре чисел, недопустимы при операциях с событиями.

Например, при операциях с событиями правильными являются действия:

Ошибочное применение действий по аналогии с алгебраическими: (А+В)В=А+ВВ=А проводит к неверному результату (проверьте с помощью диаграмм Венна!).

Пример 1.11. Доказать тождества

а) (А+С)(В+С)=АВ+С;

б) АС_В=АС_ВС

а) (А+С)(В+С) = АВ+СВ+АС+СС = АВ+С(А+В)+С= =АВ+С(А+В)+С = АВ+С(А+В+) = АВ+С = АВ+С;

б) АС_В = АС = СА = С(А_В) = СА_СВ = АС_ВС

Пример 1.12. Приз разыгрывается между двумя финалистами шоу-программы. Розыгрыш производится по очереди до первой удачной попытки, число попыток для каждого участника ограничено тремя. Первый финалист начинает первым. Рассматриваются события: А={приз выиграл первый финалист}; В={приз выиграл второй финалист}. 1) Дополнить эти события до полной группы и составить для нее достоверное событие. 2) Составить полную группу элементарных событий. 3) Выразить события первой полной группы через элементарные. 4) Составить другие полные группы событий и записать через них достоверные события.

1) События А и В несовместные, до полной группы они дополняются несовместным событием С={приз не выиграл никто}. Достоверное событие ={приз выиграет или первый финалист, или второй, или никто не выиграет} равно: =А+В+С.

2) Введем события, которые описывают исход каждой попытки для каждого игрока и не зависят от условий конкурса: А i ={первый финалист успешно провел i-тую попытку}, В i ={второй финалист успешно провел i-тую попытку}, . Эти события не учитывают условий конкурса, поэтому не являются элементарными относительно факта выигрыша приза. Но через эти события с помощью операций над событиями можно составить полную группу элементарных событий, которые учитывают условия выигрыша с первой удачной попытки: 1 ={первый финалист выиграл приз с первой попытки}, 2 ={второй финалист выиграл приз с первой попытки}, 3 ={первый финалист выиграл приз со второй попытки}, 4 ={второй финалист выиграл приз со второй попытки}, 5 ={первый финалист выиграл приз с третьей попытки}, 6 ={второй финалист выиграл приз с третьей попытки}, 7 ={оба финалиста не выиграли приз за три попытки}. По условиям конкурса

1 =А 1 , 2 =, 3 =, 4 =,

5 =, 6 = , 7 = .

Полная группа элементарных событий: ={ 1 ,…, 7 }

3) События А и В через элементарные выражаются с помощью операций суммирования, С совпадает с элементарным событием:

4) Полные группы событий также составляют события

Соответствующие им достоверные события:

={первый финалист или выиграет приз, или не выиграет}=;

={второй финалист или выиграет приз, или не выиграет}=;

={приз или не выиграют, или выиграют}=.

Достоверное и невозможное события

Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий.

Невозможным называют событие, которое заведомо не произойдет, если будет осуществлена определенная совокупность условий.

Событие, совпадающее с пустым множеством, называется невозможным событием, а событие, совпадающее со всем множеством, называется достоверным событием.

События называют равновозможными , если нет основания полагать, что одно событие является более возможным, чем другие.

Теория вероятностей есть наука, изучающая закономерности случайных событий. Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

АЛГЕБРА СОБЫТИЙ

Операции над событиями (сумма, разность, произведение)

С каждым испытанием связан ряд интересующих нас событий, которые, вообще говоря, могут появляться одновременно. Например, при бросании игральной кости (т.е. кубика, на гранях которого имеются очки 1, 2, 3, 4, 5, 6) событие есть выпадение двойки, а событие - выпадение четного числа очков. Очевидно, что эти события не исключают друг друга.

Пусть все возможные результаты испытания осуществляются в ряде единственно возможных частных случаев, взаимно исключающих друг друга. Тогда:

  • · каждый исход испытания представляется одним и только одним элементарным событием;
  • · всякое событие, связанное с этим испытанием, есть множество конечного или бесконечного числа элементарных событий;
  • · событие происходит тогда и только тогда, когда реализуется одно из элементарных событий, входящих в это множество.

Другими словами, задано произвольное, но фиксированное пространство элементарных событий, которое можно представить в виде некоторой области на плоскости. При этом элементарные события - это точки плоскости, лежащие внутри. Поскольку событие отождествляется с множеством, то над событиями можно совершать все операции, выполнимые над множествами. То есть, по аналогии с теорией множеств, строится алгебра событий . В частности, определены следующие операции и отношения между событиями:

(отношение включения множеств: множество является подмножеством множества) - событие A влечет за собой событие В. Иначе говоря, событие В происходит всякий раз, как происходит событие A.

(отношение эквивалентности множеств) - событие тождественно или эквивалентно событию. Это возможно в том и только в том случае, когда и одновременно, т.е. каждое из них происходит всякий раз, когда происходит другое.

() - сумма событий. Это событие, состоящее в том, что произошло хотя бы одно из двух событий или (не исключающее логическое «или»). В общем случае, под суммой нескольких событий понимается событие, состоящее в появлении хотя бы одного из этих событий.

() - произведение событий. Это событие, состоящее в совместном осуществлении событий и (логическое «и»). В общем случае, под произведением нескольких событий понимается событие, состоящее в одновременном осуществлении всех этих событий. Таким образом, события и несовместны, если произведение их есть событие невозможное, т.е. .

(множество элементов, принадлежащих, но не принадлежащих) - разность событий. Это событие, состоящее из исходов, входящих в, но не входящих в. Оно заключается в том, что происходит событие, но при этом не происходит событие.

Противоположным (дополнительным) для события (обозначается) называется событие, состоящее из всех исходов, которые не входят в.

Два события называются противоположными, если появление одного из них равносильно непоявлению другого. Событие, противоположное событию, происходит тогда и только тогда, когда событие не происходит. Другими словами, наступление события означает просто то, что событие не наступило.

Симметрическая разность двух событий и (обозначается) называется событие, состоящее из исходов, входящих в или, но не входящих в и в одновременно.

Смысл события состоит в том, что наступает одно и только одно из событий или.

Обозначается симметрическая разность: или.

Цель: ознакомить учащихся с правилами сложения и умножения вероятностей, понятием противоположных событий на кругах Эйлера.

Теория вероятностей есть математическая наука, изучающая закономерности в случайных явлениях.

Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по иному.

Приведём примеры случайных событий: бросаются игральные кости, бросается монета, проводится стрельба по мишени и т.д.

Все приведённые примеры можно рассматривать под одним и тем же углом зрения: случайные вариации, неодинаковые результаты ряда опытов, основные условия которых остаются неизменными.

Совершенно очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной степени элементы случайности. Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при повторении опыта результаты полностью и в точности совпадали.

Случайные отклонения неизбежно сопутствуют любому закономерному явлению. Тем не менее, в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления, его упрощённую схему «модель» и предполагая, что в данных условиях опыта явление протекает вполне определённым образом.

Однако существует ряд задач, где интересующий нас исход опыта зависит от столь большого числа факторов, что практически невозможно зарегистрировать и учесть все эти факторы.

Случайные события можно различным способом сочетать друг с другом. При этом образуются новые случайные события.

Для наглядного изображения событий используют диаграммы Эйлера . На каждой такой диаграмме прямоугольником изображают множество всех элементарных событий (рис.1). Все другие события изображают внутри прямоугольника в виде некоторой его части, ограниченной замкнутой линией. Обычно такие события изображают окружности или овалы внутри прямоугольника.

Рассмотрим наиболее важные свойства событий с помощью диаграмм Эйлера.

Объединением событий A и B называют событие C, состоящее из элементарных событий принадлежащих событию А или В (иногда объединения называют суммой).

Результат объединения можно изобразить графически диаграммой Эйлера (рис. 2).

Пересечением событий А и В называют событие С, которое благоприятствует и событию А, и событию В (иногда пересечения называют произведением).

Результат пересечения можно изобразить графически диаграммой Эйлера (рис. 3).

Если события А и В не имеют общих благоприятствующих элементарных событий, то они не могут наступить одновременно в ходе одного и то же опыта. Такие события называют несовместными , а их пересечение – пустое событие .

Разностью событий А и В называют событие С, состоящее из элементарных событий А, которые не являются элементарными событиями В.

Результат разности можно изобразить графически диаграммой Эйлера (рис.4)

Пусть прямоугольник изображает все элементарные события. Событие А изобразим в виде круга внутри прямоугольника. Оставшаяся часть прямоугольника изображает противоположное событию A, событие (рис.5)

Событием, противоположным событию А называют событие, которому благоприятствуют все элементарные события, не благоприятствующие событию А.

Событие, противоположное событию А, принято обозначать .

Примеры противоположных событий.

Объединением нескольких событий называется событие, состоящее в появлении хотя бы одного из этих событий.

Например, если опыт состоит в пяти выстрелах по мишени и даны события:

А0- ни одного попадания;
А1- ровно одно попадание;
А2- ровно 2 попадания;
А3- ровно 3 попадания;
А4- ровно 4 попадания;
А5- ровно 5 попаданий.

Найти события: не более двух попаданий и не менее трёх попаданий.

Решение: А=А0+А1+А2 – не более двух попаданий;

В=А3+А4+А5 – не менее трёх попаданий.

Пересечением нескольких событий называется событие, состоящее в совместном появлении всех этих событий.

Например, если по мишени производится три выстрела, и рассматриваются события:

В1 - промах при первом выстреле,
В2 - промах при втором выстреле,
ВЗ - промах при третьем выстреле,

то событие состоит в том, что в мишень не будет ни одного попадания.

При определении вероятностей часто приходится представлять сложные события в виде комбинаций более простых событий, при­меняя и объединение, и пересечение событий.

Например, пусть по мишени производится три выстрела, и рассматриваются следующие элементарные события:

Попадание при первом выстреле,
- промах при первом выстреле,
- попадание при втором выстреле,
- промах при втором выстреле,
- попадание при третьем выстреле,
- промах при третьем выстреле.

Рассмотрим более сложное событие В, состоящее в том, что в результате данных трёх выстрелов будет ровно одно попада­ние в мишень. Событие В можно представить в виде следующей комбинации элементарных событий:

Событие С, состоящее в том, что в мишень будет не менее двух попаданий, может быть представлено в виде:

На рис.6.1 и 6.2 показано объединение и пересечение трёх событий.


рис.6

Для определения вероятностей событий применяются не непосредственные прямые методы, а косвенные. Позволяющие по известным вероятностям одних событий определять вероятности других событий, с ними связанных. Применяя эти косвенные методы, мы всегда в той или иной форме пользуемся основными правилами теории вероятностей. Этих правил два: правило сложения вероятностей и правило умножения вероятностей.

Правило сложения вероятностей формулируется следующим образом.

Вероятность объединения двух несовместных событий равна сумме вероятностей этих событий:

Р(А+В) =Р(А)+ Р(В).

Сумма вероятностей противоположных событий равна единице:

Р(А) + Р()= 1.

На практике весьма часто оказывается легче вычислить вероятность противоположного события А, чем вероятность прямого события А. В этих случаях вычисляют Р (А) и находят

Р (А) = 1-Р().

Рассмотрим несколько примеров на применение правила сложения.

Пример 1. В лотерее 1000 билетов; из них на один билет падает выигрыш 500 руб., на 10 билетов - выигрыши по 100 руб., на 50 билетов­ - выигрыши по 20 руб., на 100 - билетов - выигрыши по 5 руб., остальные билеты невыигрышные. Некто покупает один билет. Найти вероятность выиграть не менее 20 руб.

Решение. Рассмотрим события:

А - выиграть не менее 20 руб.,

А1 - выиграть 20 руб.,
А2 - выиграть 100 руб.,
А3 - выиграть 500 руб.

Очевидно, А= А1 +А2+А3.

По правилу сложения вероятностей:

Р (А) = Р (А1) + Р (А2) + Р (А3) = 0,050 + 0,010 + 0,001 = 0,061.

Пример 2. Производится бомбометание по трём складам боеприпасов, причём сбрасывается одна бомба. Вероятность попадания в первый склад 0,01; во второй 0,008; в третий 0,025. При попадании в один из складов взры­ваются все три. Найти вероятность того, что склады будут взорваны.

Определение 1. Говорят, что в некотором опыте событие А влечёт за собой появление события В , если при наступлении события А наступает и событие В . Обозначение этого определения А Ì В . В терминах элементарных событий это означает, что каждое элементарное событие, входящее в А , входит также и в В .

Определение 2. События А и В называются равными или эквивалентными (обозначается А = В) , если А Ì В и В Ì А, т.е. А и В состоят из одних и тех же элементарных событий.

Достоверное событие представляется объемлющим множеством Ω, а невозможное событие – пустым подмножеством Æ в нём. Несовместность событий А и В означает, что соответствующие подмножества А и В не пересекаются: А В = Æ.

Определение 3. Суммой двух событий А и В (обозначается С = А + В ) называется событие С , состоящее в наступлении по крайней мере одного из событий А или В (союз «или» для суммы является ключевым словом), т.е. наступает или А , или В , или А и В вместе.

Пример. Пусть два стрелка стреляют в мишень одновременно, и событие А состоит в том, что в мишень попадает 1-й стрелок, а событие B – в том, что в мишень попадает 2-й стрелок. Событие A + B означает, что мишень поражена, или, иначе, что в мишень попал хотя бы один из стрелков (1-й стрелок или 2-й стрелок, или оба стрелка).

Аналогично, суммой конечного числа событий А 1 , А 2 , …, А n (обозначается А = А 1 + А 2 + … + А n) называется событие А , состоящее в наступлении хотя бы одного из событий А i (i = 1, … , n ), или произвольной совокупности А i (i = 1, 2, … , n ).

Пример. Суммой событий А, В, С является событие, состоящее в появлении одного из следующих событий: А , В, С, А и В , А и С , В и С , А и В и С , А или В , А или С , В или С , А или В или С .

Определение 4. Произведением двух событий А и В называется событие С (обозначается С = А ∙ В ), состоящее в том, что в результате испытания произошли и событие А, и событие В одновременно. (Союз «и» для произведения событий является ключевым словом).

Аналогично произведением конечного числа событий А 1 , А 2 , …, А n (обозначается А = А 1 ∙А 2 ∙…∙ А n) называется событие А , состоящее в том, что в результате испытания произошли все указанные события.

Пример. Если события А , В , С есть появление «герба» в первом, во втором и третьем испытании соответственно, то событие А × В × С есть выпадение «герба» во всех трех испытаниях.

Замечание 1. Для несовместных событий А и В справедливо равенство А ∙ В = Æ, где Æ – невозможное событие.

Замечание 2. События А 1 , А 2, … , А n образуют полную группу попарно несовместных событий, если .

Определение 5. Противоположными событиями называются два единственно возможных несовместных события, образующие полную группу. Событие, противоположное событию А, обозначается . Событие противоположное событию А , является дополнением к событию А до множества Ω.

Для противоположных событий одновременно удовлетворяются два условия А ∙ = Æ и А + = Ω.

Определение 6. Разностью событий А и В (обозначается А В ) называется событие, состоящее в том, что событие А наступит, а событие В – нет и оно равна А В = А × .

Отметим, что события А + В, А ∙ В, , А – В удобно трактовать в графическом виде с помощью диаграмм Эйлера – Венна (рис. 1.1).

Рис. 1.1. Операции над событиями: отрицание, сумма, произведение и разность

Сформулируем пример так: пусть опыт G заключается в проведении стрельбы наугад по области Ω, точ-ки которого являются элементар-ными событиями ω. Пусть попа-дание в область Ω есть достоверное событие Ω, а попадание в области А и В – соответственно события А и В . Тогда события , А+В (или А È В – светлая область на рисунке), А ∙ В (или А Ç В – область в центре), А – В (или А \ В – светлые подобласти) будут соответствовать четырем изображениям на рис. 1.1. В условиях предыдущего примера со стрельбой двух стрелков по мишени произведением событий А и В будет событие С = А Ç В , состоящее в попадании в мишень обоими стрелками.

Замечание 3. Если операции над событиями представить как операции над множествами, а события представить как подмножества некоторого множества Ω, то сумме событий А+В соответствует объединение А ÈВ этих подмножеств, а произведению событий А ∙ В - пересечение А В этих подмножеств.

Таким образом, операции над событиями можно поставить в соответствие операцию над множествами. Это соответствие приведено в табл. 1.1

Таблица 1.1

Обозначения

Язык теории вероятностей

Язык теории множеств

Пространство элемент. событий

Универсальное множество

Элементарное событие

Элемент из универсального множества

Случайное событие

Подмножество элементов ω из Ω

Достоверное событие

Множество всех ω

Невозможное событие

Пустое множество

А Ì В

А влечёт В

А – подмножество В

А+В (А ÈВ )

Сумма событий А и В

Объединение множеств А и В

А × В (А Ç В )

Произведение событий А и В

Пересечение множеств А и В

А – В (А \ В )

Разность событий

Разность множеств

Действия над событиями обладают следующими свойствами:

А + В = В + А, А ∙ В = В ∙ А (переместительное);

(А + В ) ∙ С = А × С + В × С, А ∙ В + С = (А + С ) × (В + С ) (распределительное);

(А + В ) + С = А + (В + С ), (А ∙ В ) ∙ С = А ∙ (В ∙ С ) (сочетательное);

А + А = А, А ∙ А = А ;

А + Ω = Ω, А ∙ Ω = А ;