Существуют несколько классификаций рецепторов. Как устроен рецептор Самостоятельные виды рецепторов

Рецепторы - это специфические нервные образования, являющиеся окончаниями чувствительных (афферентных) нервных волокон, способные возбуждаться при действии раздражителя. Рецепторы, воспринимающие раздражения из внешней среды, называются экстероцепторами; воспринимающие раздражения из внутренней среды организма - интероцепторами. Выделяют группу рецепторов, расположенных в скелетных мышцах и сухожилиях и сигнализирующих о мышц,- проприоцепторы.

В зависимости от характера раздражителя рецепторы разделяют на несколько групп.
1. Механорецепторы, к которым относятся тактильные рецепторы; барорецепторы, расположенные в стенках и реагирующие на изменение кровяного давления; фонорецепторы, реагирующие на колебания воздуха, создаваемые звуковым раздражителем; рецепторы отолитового аппарата, воспринимающие изменения положения тела в пространстве.

2. Хеморецепторы, реагирующие при воздействии каких-либо химических веществ. К ним относятся осморецепторы и глюкорецепторы, воспринимающие соответственно изменения осмотического давления и уровня сахара в крови; вкусовые и обонятельные рецепторы, воспринимающие наличие химических веществ в окружающей среде.

3. , воспринимающие изменение температуры как внутри организма, так и в окружающей организм среде.

4. Фоторецепторы, расположенные в сетчатке глаза, воспринимают световые раздражители.

5. Болевые рецепторы выделяются в особую группу. Они могут возбуждаться механическими, химическими и температурными раздражителями такой силы, при которой возможно разрушительное их действие на ткани или органы.

Морфологически рецепторы могут быть в виде простых свободных нервных окончаний или иметь форму волосков, спиралей, пластинок, шайбочек, шариков, колбочек, палочек. Структура рецепторов тесно связана со специфичностью адекватных раздражителей, к которым рецепторы имеют высокую абсолютную чувствительность. Для возбуждения фоторецепторов достаточно всего 5-10 квантов света, для возбуждения обонятельных рецепторов - одной молекулы пахучего вещества. При длительном воздействии раздражителя происходит адаптация рецепторов, что проявляется в снижении их чувствительности к адекватному раздражителю. Различают быстро адаптирующиеся (тактильные, барорецепторы) и медленно адаптирующиеся рецепторы (хеморецепторы, фонорецепторы). Вестибулорецепторы и проприоцепторы, в отличие от них, не адаптируются. В рецепторах под действием внешнего раздражителя возникает деполяризация его поверхностной мембраны, которая обозначается как рецепторный или генераторный потенциал. Достигнув критической величины, он вызывает разряд афферентных импульсов возбуждения в нервном волокне, отходящем от рецептора. Воспринимаемая рецепторами информация из внутренней и внешней среды организма передается по афферентным нервным путям в центральную нервную систему, где она анализируется (см. Анализаторы).

В некоторых рецепторах (например, вкусовых и слуховых рецепторах человека) раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или видоизмененными нервными клетками (чувствительные элементы сетчатки), которые не генерируют нервных импульсов, а действуют на иннервирующие их нервные окончания, изменяя секрецию медиатора. В других случаях единственным клеточным элементом рецепторного комплекса является само нервное окончание, часто связанное со специальными структурами межклеточного вещества (например, тельце Пачини ).

Принцип работы рецепторов

Стимулами для разных рецепторов могут служить свет , механическая деформация , химические вещества, изменения температуры , а также изменения электрического и магнитного поля. В рецепторных клетках (будь то непосредственно нервные окончания или специализированные клетки) соответствующий сигнал изменяет конформацию чувствительных молекул-клеточных рецепторов, что приводит к изменению активности мембранных ионных рецепторов и изменению мембранного потенциала клетки. Если воспринимающей клеткой является непосредственно нервное окончание (так называемые первичные рецепторы ), то обычно происходит деполяризация мембраны с последующей генерацией нервного импульса. Специализированные рецепторные клетки вторичных рецепторов могут как де-, так и гиперполяризоваться. В последнем случае изменение мембранного потенциала ведет к уменьшению секреции тормозного медиатора, действующего на нервное окончание и, в конечном счете, все равно к генерации нервного импульса. Такой механизм реализован, в частности, в чувствительных элементах сетчатки.

В качестве клеточных рецепторных молекул могут выступать либо механо-, термо- и хемочувствительные ионные каналы, либо специализированные G-белки (как в клетках сетчатки). В первом случае открытие каналов непосредственно изменяет мембранный потенциал (механочувствительные каналы в тельцах Пачини), во втором случае запускается каскад внутриклеточных реакций трансдукции сигнала, что ведет в конечном счете к открытию каналов и изменению потенциала на мембране.

Виды рецепторов

Существуют несколько классификаций рецепторов:

  • По положению в организме

      Экстерорецепторы (экстероцепторы) – расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)

      Интерорецепторы (интероцепторы) – расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)

      • Проприорецепторы (проприоцепторы) – рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.

  • По способности воспринимать разные стимулы

      Мономодальные – реагирующие только на один тип раздражителей (например, фоторецепторы – на свет)

      Полимодальные – реагирующиена несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).

    По адекватному раздражителю

    • Рецепторы волосяных луковиц – реагируют на отклонение волоса.

      Окончания Руффини – рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями . Реагируют на тепло.

      Колба Краузе – рецептор, реагирующий на холод.

    Рецепторы мышц и сухожилий

    • Мышечные веретена – рецепторы растяжения мышц, бывают двух типов:
      • с ядерной сумкой
      • с ядерной цепочкой
    • Сухожильный орган Гольджи – рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

    Рецепторы связок

    В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа – инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 – тельцам Паччини.

Рецепторы делят на внешние, или экстероцепторы, и внутренние, или интерорецепторы. Экстероцепторы расположены на внешней поверхности тела животного или человека и воспринимают раздражения из внешнего мира (световые, звуковые, термические и др.). Интероцепторы находятся в различных тканях и внутренних органах (сердце, лимфатические и кровеносные сосуды, лёгкие и т.д.); воспринимают раздражители, сигнализирующие о состоянии внутренних органов (висцероцепторы), а также о положении тела или его частей в пространстве (вестибулоцепторы). Разновидность интероцепторов -- проприорецепторы, расположенные в мышцах, сухожилиях и связках и воспринимающие статическое состояние мышц и их динамику. В зависимости от природы воспринимаемого адекватного раздражителя различают механорецепторы, фоторецепторы, хеморецепторы, терморецепторы и др. У дельфинов, летучих мышей и ночных бабочек обнаружены рецепторы, чувствительные к ультразвуку, у некоторых рыб -- к электрическим полям. Менее изучен вопрос о существовании у некоторых птиц и рыб рецепторов, чувствительных к магнитным полям. Мономодальные рецепторы воспринимают раздражения только одного рода (механическое, световое или химическое); среди них -- рецепторы, различные по уровню чувствительности и отношению к раздражающему стимулу. Так, фоторецепторы позвоночных подразделяются на более чувствительные палочковые клетки, функционирующие как рецепторы сумеречного зрения, и менее чувствительные колбочковые клетки, обеспечивающие у человека и ряда животных дневное светоощущение и цветовое зрение; механорецепторы кожи -- на более чувствительные фазные рецепторы реагирующие только на динамическую фазу деформации, и статические, реагирующие и на постоянную деформацию, и т.д. В результате такой специализации рецепторы выделяются наиболее значительные свойства стимула и осуществляется тонкий анализ воспринимаемых раздражений. Полимодальные рецепторы реагируют на раздражения разного качества, например химическое и механическое, механическое и температурное. При этом закодированная в молекулах специфическая информация передаётся в центральную нервную систему по одним и тем же нервным волокнам в виде нервных импульсов, подвергаясь на своём пути неоднократному энергетическому усилению. Исторически сохранилось деление рецепторов на дистантные (зрительные, слуховые, обонятельные), воспринимающие сигналы от источника раздражения, находящегося на некотором расстоянии от организма, и контактные -- при непосредственном соприкосновении с источником раздражения. Различают также рецепторы первичные (первичночувствующие) и вторичные (вторичночувствующие). У первичных рецепторов субстрат, воспринимающий внешнее воздействие, заложен в самом сенсорном нейроне, который непосредственно (первично) возбуждается раздражителем. У вторичных рецепторах между действующим агентом и сенсорным нейроном располагаются дополнительные, специализированные (рецептирующие) клетки, в которых преобразуется (трансформируется) в нервные импульсы энергия внешних раздражений.

Все рецепторы характеризуются рядом общих свойств. Они специализированы для рецепции определённых, свойственных им раздражений, называемыми адекватными. При действии раздражений в рецепторах возникает изменение разности биоэлектрических потенциалов на клеточной мембране, так называемый рецепторный потенциал, который либо непосредственно генерирует ритмические импульсы в рецепторной клетке, либо приводит к их возникновению в другом нейроне, связанном с рецептором посредством синапса. Частота импульсов возрастает с увеличением интенсивности раздражения. При продолжительном действии раздражителя снижается частота импульсов в волокне, отходящем от рецептора; подобное явление уменьшения активности рецептора называется адаптацией физиологической. Для различных рецепторов время такой адаптации неодинаково. Рецепторы отличаются высокой чувствительностью к адекватным раздражителям, которая измеряется величиной абсолютного порога, или минимальной интенсивностью раздражения, способного привести рецепторы в состояние возбуждения. Так, например, 5--7 квантов света, падающего на рецептор глаза, вызывают световое ощущение, а для возбуждения отдельного фоторецептора достаточно 1 кванта. Рецептор можно возбудить и неадекватным раздражителем. Воздействуя, например, на глаз или ухо электрическим током, можно вызвать ощущение света или звука. Ощущения связаны со специфической чувствительностью рецептора, возникшей в ходе эволюции органической природы. Образное восприятие мира связано преимущественно с информацией, идущей с экстероцепторов. Информация с интероцепторов не приводит к возникновению чётких ощущений. Функции различных рецепторов взаимосвязаны. Взаимодействие вестибулярных рецепторов, а также рецепторов кожи и проприоцепторов со зрительными осуществляется центральной нервной системой и лежит в основе восприятия величины и формы предметов, их положения в пространстве. Рецепторы могут взаимодействовать между собой и без участия центральной нервной системы, т. е. вследствие непосредственной связи друг с другом. Такое взаимодействие, установленное на зрительных, тактильных и других рецепторов, имеет важное значение для механизма пространственно-временного контраста. Деятельность рецепторов регулируется центральной нервной системой, осуществляющей их настройку в зависимости от потребностей организма. Эти влияния, механизм которых изучен недостаточно, осуществляются посредством специальных эфферентных волокон, подходящих к некоторым рецепторным структурам.

Функции рецепторов исследуют методом регистрации биоэлектрических потенциалов непосредственно от рецепторов или связанных с ним нервных волокон, а также методом регистрации рефлекторных реакций, возникающих при раздражении рецепторов.

Рецепторы фармакологические (РФ), рецепторы клеточные, рецепторы тканевые, расположены на мембране эффекторной клетки; воспринимают регуляторные и пусковые сигналы нервной и эндокринной систем, действие многих фармакологических препаратов, избирательно влияющих на эту клетку, и трансформируют указанные воздействия в её специфическую биохимическую или физиологическую реакцию. Наиболее исследованы РФ, посредством которых осуществляется действие нервной системы. Влияние парасимпатического и двигательного отделов нервной системы (медиатор ацетилхолин) передают два типа РФ: Н-холиноцепторы передают нервные импульсы на скелетные мышцы и в нервных ганглиях с нейрона на нейрон; М-холино-цепторы участвуют в регуляции работы сердца и тонуса гладких мышц. Влияние симпатической нервной системы (медиатор норадреналин) и гормона мозгового вещества надпочечника (адреналина) передаётся альфа- и бета-адреноцепторами. Возбуждение альфа-адреноцепторов вызывает сужение сосудов, подъём артериального давления, расширение зрачка, сокращение ряда гладких мышц и т.д.; возбуждение бета-адреноцепторов -- увеличение сахара в крови, активацию ферментов, расширение сосудов, расслабление гладких мышц, усиление частоты и силы сердечных сокращений и т.д. Т. о., функциональное влияние осуществляется через оба типа адреноцепторов, а метаболическое -- преимущественно через бета-адреноцепторы. Обнаружены также РФ, чувствительные к дофамину, серотонину, гистамину, полипептидам и другим эндогенным биологически активным веществам и к фармакологическим антагонистам некоторых из этих веществ. Терапевтический эффект ряда фармакологических препаратов обусловлен их специфическим действием на специфические рецепторы.

Координация жизнедеятельности организма невозможна без информации, непрерывно поступающей из внешней среды. Специальные органы или клетки, воспринимающие сигналы, называются рецепторами; сам сигнал при этом называется стимулом. Различные рецепторы могут воспринимать информацию как из внешней, так и из внутренней среды.

По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств. Животные могут воспринимать информацию следующих типов:

Свет (фоторецепторы);

Химические вещества - вкус, запах, влажность (хеморецепторы);

Механические деформации - звук, прикосновение, давление, сила тяжести (механорецепторы);

Температура (терморецепторы);

Электричество (электрорецепторы).

Рецепторы преобразуют энергию раздражителя в электрический сигнал, который возбуждает нейроны. Механизм возбуждения рецепторов связан с изменением проницаемости клеточной мембраны для ионов калия и натрия. Когда раздражение достигает пороговой величины, возбуждается сенсорный нейрон, посылающий импульс в центральную нервную систему. Можно сказать, что рецепторы кодируют поступающую информацию в виде электрических сигналов.

Как уже отмечалось, сенсорная клетка посылает информацию по принципу «всё или ничего» (есть сигнал / нет сигнала). Для того, чтобы определить интенсивность стимула, рецепторный орган использует параллельно несколько клеток, у каждой из которых имеется свой порог чувствительности. Существует и относительная чувствительность - на сколько процентов нужно изменить интенсивность сигнала, чтобы орган чувства зафиксировал изменение. Так, у человека относительная чувствительность яркости света примерно равна 1 %, силы звука - 10 %, силы тяжести - 3 %. Эти закономерности были открыты Бугером и Вебером; они справедливы только для средней зоны интенсивности раздражителей. Сенсорам также свойственна адаптация - они реагируют преимущественно на резкие изменения в окружающей среде, не «засоряя» нервную систему статической фоновой информацией.

Чувствительность сенсорного органа можно значительно повысить посредством суммации, когда несколько расположенных рядом сенсорных клеток связаны с одним нейроном. Слабый сигнал, попадающий в рецептор, не вызвал бы возбуждения нейронов, если бы они были связаны с каждой из сенсорных клеток в отдельности, но вызывает возбуждение нейрона, в котором суммируется информация от нескольких клеток сразу. С другой стороны, этот эффект понижает разрешающую способность органа. Так, палочки в сетчатке глаза, в отличие от колбочек, обладают повышенной чувствительностью, так как один нейрон связан сразу с несколькими палочками, но зато имеют меньшую разрешающую способность. Чувствительность к очень малым изменениям в некоторых рецепторах очень высока благодаря их спонтанной активности, когда нервные импульсы возникают даже в отсутствие сигнала. В противном случае слабые импульсы не смогли бы преодолеть порог чувствительности нейрона. Порог чувствительности может изменяться благодаря импульсам, поступающим из центральной нервной системы (обычно по принципу обратной связи), что изменяет диапазон чувствительности рецептора. Наконец, важную роль в повышении чувствительности играет латеральное торможение. Соседние сенсорные клетки, возбуждаясь, оказывают друг на друга тормозящее воздействие. Благодаря этому усиливается контраст между соседними участками.

Наиболее примитивными рецепторами считаются механические, реагирующие на прикосновение и давление. Разница между этими двумя ощущениями количественная; прикосновение обычно регистрируется тончайшими окончаниями нейронов, расположенными близко к поверхности кожи, в основаниях волосков или усиков. Есть и специализированные органы - тельца Мейснера. На давление же реагируют тельца Пачини, состоящие из единственного нервного окончания, окружённого соединительной тканью. Импульсы возбуждаются за счёт изменения проницаемости мембраны, возникающей благодаря её растяжению.

Органом равновесия у млекопитающих является вестибулярный аппарат, расположенный во внутреннем ухе. Его рецепторные клетки снабжены волосками. Движение головы приводит к отклонению волосков и изменению потенциала. Если при изменении положения головы это отклонение усиливается отокониями - кристаллами карбоната кальция, расположенными поверх волосков овального и круглых мешочков, то чувствительность к скорости поворота обеспечивается инерционностью студенистой массы - купулы, - находящейся в полукружных каналах.

Боковые органы реагируют на скорость и направление тока воды, предоставляя животным информацию об изменении положения собственного тела, а также о расположенных рядом предметах. Они состоят из сенсорных клеток с щетинками на концах, которые обычно лежат в подкожных каналах. Короткие трубочки, проходящие сквозь чешую, выходят наружу, образуя боковую линию. Боковые органы имеются у круглоротых, рыб и водных земноводных.

Орган слуха, воспринимающий звуковые волны в воздухе или воде, называется ухом. Уши имеются у всех позвоночных, но если у рыб они представляют собой небольшие выступы, то у млекопитающих они прогрессируют в систему из наружного, среднего и внутреннего уха со сложно устроенной улиткой. Наружное ухо имеется у рептилий, птиц и зверей; у последних оно представлено подвижной хрящевой ушной раковиной. У млекопитающих, перешедших к водному образу жизни, наружное ухо редуцировано. У млекопитающих главный элемент уха - барабанная перепонка - отделяет наружное ухо от среднего. Её колебания, возбуждаемые звуковыми волнами, усиливаются благодаря трём слуховым косточкам - молоточку, наковальне и стремени. Далее колебания передаются через овальное окно в сложную систему каналов и полостей внутреннего уха, заполненную жидкостью; взаимное перемещение базилярной и текториальной мембран преобразует механический сигнал в электрический, который затем посылается в центральную нервную систему. Евстахиева труба, соединяющая среднее ухо с глоткой, выравнивает давление и предотвращает повреждение слуховых органов при его изменении.

Схема строения уха человека

По мере удаления от основания улитки базилярная мембрана расширяется; чувствительность её меняется таким образом, что звуки высокой частоты стимулируют нервные окончания только в основании улитки, а звуки низкой частоты - только в её верхушке. Звуки, состоящие из нескольких частот, стимулируют различные участки мембраны; нервные импульсы суммируются в слуховой зоне коры головного мозга, в результате чего возникает ощущение одного смешанного звука. Различение же громкости звука связано с тем, что каждый участок базилярной мембраны содержит набор клеток с разным порогом чувствительности.

У насекомых барабанная перепонка располагается на передних ногах, груди, брюшке или крыльях. Многие насекомые восприимчивы к ультразвуку (так, бабочки могут регистрировать звуковые волны частотой до 240 кГц).

На температуру могут реагировать как специализированные органы - тельца Руффини (тепло) и колбочки Краузе (холод), так и свободные нервные окончания, находящиеся в коже.

Некоторые группы рыб развили парные электрические органы, предназначенные для защиты, нападения, сигнализации и ориентации в пространстве. Они находятся по бокам тела или возле глаз и состоят из собранных в столбики электрических пластинок - видоизменённых клеток, генерирующих электрический ток. Пластинки в каждом столбике соединены последовательно, а сами стоблики - параллельно. Общее количество пластинок составляет сотни тысяч и даже миллионы. Напряжение на концах электрических органов может достигать 1200 В. Частота разрядов зависит от их назначения и может составлять десятки и сотни герц; при этом напряжение в разряде колеблется от 20 до 600 В, а сила тока - от 0,1 до 50 А. Электрические разряды скатов и угрей опасны для человека.

Вкусовые зоны языка человека


Строение вкусовой почки

Ощущения вкуса и запаха связаны с действием химических веществ. У млекопитающих вкусовые раздражители взаимодействуют со специфическими молекулами сенсорных клеток, образующих вкусовые почки. Существуют четыре типа вкусовых ощущений: сладкое, солёное, кислое и горькое. До сих пор неизвестно, каким образом вкус зависит от внутреннего строения химического вещества.

Пахучие вещества, находящиеся в воздухе, проникают через слизь и стимулируют обонятельные клетки. Возможно, существует несколько основных запахов, каждый из которых воздействует на определённую группу рецепторов.

Органы обоняния

Чрезвычайно чуткими органами вкуса и запаха, в сотни и тысячи раз превосходящими по эффективности человеческие, обладают насекомые. Органы вкуса располагаются у насекомых на усиках, губных щупиках и лапках. Органы обоняния обычно расположены на усиках.

Наиболее примитивные фоторецепторные системы (глазные пятнышки) имеются у простейших. Простейшие светочувствительные глазки, состоящие из зрительных и пигментных клеток, есть у некоторых кишечнополостных, низших червей. Они способны различать свет и темноту, но не способны создавать изображение. Более сложные органы зрения у некоторых кольчатых червей, моллюсков и членистоногих снабжены светопреломляющим аппаратом.

Фасеточные глаза членистоногих состоят из многочисленных отдельных глазков - омматидиев. Каждый омматидий имеет прозрачную двояковыпуклую роговую линзу и хрустальный конус, фокусирующие свет на скопление светочувствительных клеток. Поле зрения каждого омматидия очень мало; вместе они образуют перекрывающееся мозаичное изображение, обладающее не очень большой разрешающей способностью, но достаточно чувствительное.

Строение глаза человека

Наиболее совершенными глазами - так называемым камерным зрением - обладают головоногие моллюски и позвоночные (особенно птицы). Глаза позвоночных состоят из глазных яблок, соединённых с головным мозгом, и периферийных частей: век, защищающих глаза от повреждений и яркого света, слёзных желез, увлажняющих поверхность глаза, и глазо-двигательных мышц. Глазное яблоко имеет шаровидную форму диаметром около 24 мм (здесь и далее все цифры приведены для человеческого глаза) и весит 6-8 г. Снаружи глазное яблоко защищено склерой (у человека - 1 мм толщиной), переходящей спереди в тонкую и прозрачную роговицу (0,6 мм), преломляющую свет. Под этим слоем находится сосудистая оболочка, снабжающая кровью сетчатку. В обращённой к свету части глазного яблока содержится белковая двояковыпуклая линза (хрусталик) и служащая для аккомодации радужная оболочка. От её пигментации зависит цвет глаз. Посередине радужки имеется отверстие диаметром около 3,5 мм - зрачок. Особые мышцы могут изменять диаметр зрачка, регулируя поступление в глаз световых лучей. Хрусталик находится позади радужной оболочки; сокращение реснитчатого тела обеспечивает изменение его кривизны, то есть точную фокусировку.

Статья по анатомии и физиологии человека

Рецепторы и их роль в организме человека

Воробьев Антон Сергеевич

Рецептор (от лат. recipere - получать) - чувствительное нервное окончание или специализированная клетка, преобразующее воспринимаемое раздражение в нервные импульсы.
Рецептор гораздо более восприимчив к внешним воздействиям, чем другие органы и нервные волокна. Чувствительность этого органа особенно высока и обратно пропорциональна порогу. То есть если говорят, что порог раздражения низкий, это значит, что чувствительность рецептора высокая. Рецептор - это специализированный аппарат.
Каждый рецептор предназначен для восприятия одного из видов раздражения.
Все рецепторы характеризуются наличием специфического участка мембраны, содержащего рецепторный белок, обусловливающий процессы рецепции.
Основной характеристикой рецепторного аппарата организма является его приспособленность к восприятию раздражений, повышенная чувствительность к ним и специализация к определенным видам воздействия.
Существуют несколько классификаций рецепторов:
  • По положению в организме
    • Экстерорецепторы (экстероцепторы) — расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)
    • Интерорецепторы (интероцепторы) — расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)
      • Проприорецепторы (проприоцепторы) — рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов
  • По способности воспринимать разные стимулы
    • Мономодальные — реагирующие только на один тип раздражителей (например, фоторецепторы — на свет)
    • Полимодальные — реагирующие на несколько типов раздражителей (например, многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы)
  • Поадекватному раздражителю :
    • Хеморецепторы — воспринимают воздействие растворенных или летучих химических веществ
    • Осморецепторы — воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды)
    • Механорецепторы — воспринима ют механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)
    • Фоторецепторы — воспринимают видимый и ультрафиолетовый свет
    • Терморецепторы — воспринимают понижение (холодовые) или повышение (тепловые) стимулы
    • Болевые рецепторы , стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность ноцицепторов, которая не позволяет отнести их, например, к «высокопороговым терморецепторам», состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов.
    • Электрорецепторы — воспринимают изменения электрического поля
    • Магнитные рецепторы — воспринимают изменения магнитного поля
У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции — осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции — зрение. Терморецепторы есть в коже и некоторых внутренних органах. Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы. Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, воспринимающие pH, концентрации углекислого газа и кислорода в крови, включены в регуляцию дыхания и т. д.

Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток.
Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини — капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются вподкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент началавоздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то естьпредставляют грубую чувствительность.
  • Тельца Мейснера — рецепторы давления, расположенные в дерме . Представляют собой слоистую структурус нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малымирецептивными полями, то есть представляют тонкую чувствительность.
  • Диски Меркеля — некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.
  • Рецепторы волосяных луковиц — реагируют на отклонение волоса.
  • Окончания Руффини — рецепторы растяжения. Являются медленноадаптирующимися, обладают большимирецептивными полями.
Рецепторы мышц и сухожилий
  • Мышечные веретена — рецепторы растяжения мышц, бывают двух типов:
    • с ядерной сумкой
    • с ядерной цепочкой
  • Сухожильный орган Гольджи — рецепторы сокращения мышц. При сокращении мышцы сухожилиерастягивается и его волокна пережимают рецепторное окончание, активируя его.
Рецепторы связок
В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа — инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 — тельцам Паччини.
Рецепторы сетчатки глаза

Сетчатка содержит палочковые (палочки ) и колбочковые (колбочки ) фоточувствительные клетки, которыесодержат светочуствительные пигменты . Палочки чуствительны к очень слабому свету, это длинные и тонкие клетки , сориентированные по оси прохождения света. Все палочки содержат один и тот же светочуствительный пигмент. Колбочки требуют намного более яркого освещения, это короткиеконусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свойсветочуствительный пигмент — это и есть основа цветового зрения .
Под воздействием света в рецепторах происходит выцветание — молекула зрительного пигмента поглощает
фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны ). Практическиу всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединенанебольшая молекула, близкая к витамину A . Эта молекула и представляет собой химическитрансформируемую светом часть. Белковая часть выцвевшей молекулы зрительного пигмента активируетмолекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата , участвующих в открытии пор мембраны для ионов натрия , в результате чего поток ионов прекращается — мембрана гиперполяризуется.
Чуствительность палочек такова, что
адаптировавшийся к полной темноте человек способен увидеть вспышкусвета такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки неспособны реагировать на изменения освещённости, когда свет настолько ярок, что все натриевые поры ужезакрыты.
Литература:
  • Дэвид Хьюбел — «Глаз, мозг, зрение» перевод с англ. канд. биол. наук О. В. Левашова, канд. биол. наук Г. А. Шараева под ред. чл.-корр. АН СССР А. Л. Бызова, Москва «Мир», 1990
  • http://anatomus.ru/articles/rol-retseptorov.html

Рецепторы

Две тысячи лет назад Аристотель написал, что у человека существуют пять чувств: зрение, слух, осязание, обоняние и вкус. За два тысячелетия ученые неоднократно открывали органы новых «шестых чувств», например вестибулярный аппарат или температурные рецепторы. Эти органы чувств часто называют «ворота в мир»: они позволяют животным ориентироваться во внешней среде и воспринимать сигналы себе подобных. Однако не меньшее значение в жизни животных играет и «взгляд внутрь себя»; ученые открыли разнообразные рецепторы, измеряющие кровяное давление, содержание сахара и углекислого газа в крови, осмотическое давление крови, степень растяжения мышц и т. д. Эти внутренние рецепторы, сигналы которых, как правило, не доходят до сознания, позволяют нашей нервной системе управлять разнообразными процессами внутри организма.

Из сказанного ясно, что классификация Аристотеля явно устарела и сегодня число разных «чувств» оказалось бы весьма велико, особенно если рассматривать органы чувств разнообразных организмов, населяющих Землю.

Вместе с тем, по мере изучения этого разнообразия обнаружилось, что в основе работы всех органов чувств лежит один принцип. Внешнее воздействие принимается специальными клетками - рецепторами и меняет МП этих клеток. Этот электрический сигнал называют рецепторным потенциалом. А дальше рецепторный потенциал управляет выделением медиатора из рецепторной клетки, либо частотой ее импульсации. Таким образом, рецептор - это преобразователь внешних воздействий в электрические сигналы, как об этом гениально догадался Вольт.

Рецепторы передают сигналы в нервную систему, где происходит их дальнейшая обработка.

В старые времена на производстве приборы располагались непосредственно у мест измерения. Например, каждый паровой котел был снабжен своим термометром и манометром. Однако в дальнейшем такие приборы, как правило, заменяли датчиками, преобразующими температуру или давление в электрические сигналы; эти сигналы можно было легко передать на расстояние. Теперь оператор смотрит на щит, где собраны приборы, показывающие температуру, давление, скорость вращения турбины и т. д., и не должен обходить по очереди все агрегаты. Фактически, живые организмы выработали такую прогрессивную систему измерения разных величин за сотни миллионов лет до возникновения техники. Роль щита, на который поступают все сигналы, играет при этом мозг.

Разнообразные рецепторы естественно классифицировать по типам воспринимаемых ими внешних воздействий. Например, такие разные рецепторы, как рецепторы органа слуха, рецепторы органа равновесия, рецепторы, обеспечивающие осязание, реагируют на внешние воздействия одного и того же типа - механические. С этой точки зрения можно выделить следующие типы рецепторов.

1) Фоторецепторы, клетки, реагирующие на электромагнитные волны, частота которых лежит в определенном диапазоне.

2) Механорецепторы, клетки, реагирующие на смещение их частей друг относительно друга; к механорецепторам, как уже говорилось, относятся и клетки, воспринимающие звуки, т. е. колебания воды и воздуха определенной частоты, и осязательные механорецепторы, и клетки органов боковой линии рыб, воспринимающие движение воды относительно тела рыбы, и клетки, реагирующие на растяжение мышц и сухожилий, и др.

3) Хеморецепторы, клетки, реагирующие на те или иные химические вещества; их деятельность лежит в основе работы органов обоняния и вкуса.

4) Терморецепторы, клетки, воспринимающие температуру.

5) Электрорецепторы, клетки, реагирующие на электрические поля в окружающей среде.

Пожалуй, эти пять типов рецепторов мы поставили бы сегодня на место пяти чувств, описанных Аристотелем.

Давайте рассмотрим теперь для примера один из типов рецепторных клеток - фоторецепторы.

Фоторецепторы

Фоторецепторы сетчатки позвоночных - это палочки и колбочки. Еще в 1866 г. немецкий анатом М. Шульц обнаружил, что у дневных птиц в сетчатке в основном находятся колбочки, а у ночных птиц - палочки. Он сделал вывод, что палочки служат для восприятия слабого света, а колбочки - сильного. Этот вывод подтвердился последующими исследованиями. Сравнение разных животных добавило много аргументов в пользу этой гипотезы: например, у глубоководных рыб с их огромными глазами в сетчатке имеются только палочки.

Посмотрите на рис. 59. На нем изображена палочка позвоночного животного. У нее есть внутренний сегмент и наружный сегмент, соединенные шейкой. В области внутреннего сегмента палочка образует синапсы и выделяет медиатор, действующий на связанные с ней нейроны сетчатки. Медиатор выделяется, как и у других клеток, при деполяризации. Во внешнем сегменте имеются особые образования - диски, в мембрану которых встроены молекулы родопсина. Этот белок и является непосредственным «приёмником» света.

При изучении палочек оказалось, что палочка может быть возбуждена всего одним фотоном света, т. е. обладает максимально возможной чувствительностью. При поглощении одного фотона МП палочки меняется примерно на 1 мВ. Расчеты показывают, что для такого сдвига потенциала надо повлиять примерно на 1 ООО ионных каналов. Как же один фотон может повлиять на столько каналов? Было известно, что фотон, проникая в палочку, захватывается молекулой родопсина и меняет состояние этой молекулы.

Но единственная молекула нисколько не лучше одного фотона. Оставалось совершенно непонятным, как эта молекула ухитряется изменить МП палочки, тем более, что диски с родопсином электрически не связаны с наружной мембраной клетки.

Разгадка работы палочек в основном была найдена за последние несколько лет. Оказалось, что родопсин, поглотив квант света, приобретает на некоторое время свойства катализатора и успевает изменить несколько молекул специального белка, которые вызывают, в свою очередь, другие биохимические реакции. Таким образом, работа палочки объясняется возникновением цепной реакции, которая запускается при поглощении всего одного кванта света и приводит к появлению внутри палочки тысяч молекул вещества, способного влиять на ионные каналы изнутри клетки.

Что же делает этот внутриклеточный медиатор? Оказывается, мембрана внутреннего сегмента палочки достаточно обычна - стандартна по своим свойствам: она содержит К-каналы, создающие ПП. А вот мембрана наружного сегмента необычна: она содержит только Ка-каналы. В покое они открыты, и хотя их не очень много, этого достаточно, чтобы идущий через них ток снижал МП, деполяризуя палочку. Так вот, внутриклеточный медиатор способен закрывать часть Ка-каналов, при этом сопротивление нагрузки растет и МП тоже нарастает, приближаясь к калиевому равновесному потенциалу. В результате палочка при действии на нее света гиперполяризуется.

А теперь на минуту задумайтесь над тем, что вы только что узнали, и вы сильно удивитесь. Оказывается, наши фоторецепторы выделяют больше всего медиатора в темноте, а вот при освещении они выделяют его меньше, и тем меньше, чем ярче свет. Это удивительное открытие было сделано в 1968г. Ю.А. Трифоновым из лаборатории А.Л. Вызова, когда о механизме работы палочек было известно еще мало.

Итак, мы тут встретились еще с одним типом каналов - каналами, управляемыми изнутри клетки.

Если мы сравним фоторецептор позвоночного и беспозвоночного животного, то увидим, что в их работе очень много общего: имеется пигмент типа родопсина; сигнал от возбужденного пигмента передается к наружной мембране с помощью внутриклеточного медиатора; клетка не способна к генерации ПД. Различие же состоит в том, что внутриклеточный медиатор действует у разных организмов на разные ионные каналы: у позвоночных он вызывает гиперполяризацню рецептора, а у беспозвоночных, как правило,- деполяризацию. Например, у морского моллюска - гребешка - при освещении рецепторов дистальной сетчатки возникает их гиперполяризация, как у позвоночных, но механизм ее совершенно другой. У гребешка свет увеличивает проницаемость мембраны к ионам калия и МП сдвигается ближе к равновесному калиевому потенциалу.

Однако знак изменения потенциала фоторецептора не слишком существен, его всегда можно изменить в ходе дальнейшей обработки. Важно лишь, чтобы световой сигнал надежно преобразовывался в электрический.

Давайте рассмотрим для примера дальнейшую судьбу возникшего электрического сигнала в зрительной системе уже знакомых нам усоногих раков. У этих животных фоторецепторы при освещении деполяризуются и выделяют больше медиатора, но это не вызывает никакой реакции животного. Зато при затенении глаз рак принимает меры: убирает усики и т. д. Как же это происходит? Дело в том, что медиатор фоторецепторов усоногих раков тормозной, он гиперполяризует следующую клетку нейронной цепи, и она начинает выделять меньше медиатора, поэтому, когда свет становится ярче, никакой реакции не возникает. Наоборот, при затенении фоторецептора он выделяет меньше медиатора и перестает тормозить клетку второго порядка. Тогда эта клетка деполяризуется и возбуждает свою клетку-мишень, в которой возникают импульсы. Клетка 2 в этой цепи называется И-клеткой, от слова «инвертирующая», так как ее основная роль - менять знак сигнала фоторецептора. Усоногий рак имеет довольно примитивные глаза, да ему и немного надо; он ведет прикрепленный образ жизни и ему достаточно знать, что приближается враг. У других животных система нейронов второго и третьего порядков устроена гораздо сложнее,

В фоторецепторах рецепторный потенциал передается дальше электротонически и влияет на количество выделяющегося медиатора. У позвоночных или усоногих раков и следующая клетка безымпульсная и только третий нейрон цепочки способен к генерации импульсов. А вот в рецепторе растяжения наших мышц ситуация совершенно иная. Этот механорецептор представляет собой окончание нервного волокна, обвивающееся спиралью вокруг мышечного волокна. При растяжении ншпцы витки спирали, образованные безмиелиновой частью волокна, отходят друг от друга и в них возникает Г-цепторный потенциал - деполяризация, обусловленная открыванием Ка-каналов, чувствительных к деформации мембраны; этот потенциал создает ток, идущий через перехват Ранвье того же волокна, и перехват генерирует импульсы. Чем сильнее растянута мышца, тем больше рецепторный потенциал и тем выше частота импульсации.

У этого механорецептора и преобразование внешнего воздействия в электрический сигнал, т. е. в рецепторный потенциал, и преобразование рецепторного потенциала в импульсы реализуется участком одного аксона.

Конечно, нам было бы интересно рассказать об устройстве разных рецепторов разных животных, ведь по своей конструкции и применению они бывают весьма экзотическими; однако каждый такой рассказ в конце концов сводился бы к одному и тому же: как внешний сигнал преобразуется в рецепторный потенциал, который управляет выделением медиатора или вызывает генерацию импульсов.

Но об одном типе рецепторов мы все же еще расскажем. Это электрорецептор. Его особенность состоит в том, что сигнал, на который надо реагировать, уже имеет электрическую природу. Что же делает этот рецептор? Преобразует электрический сигнал в электрический?


Электрорецепторы. Как акулы используют закон Ома и теорию вероятностей

В 1951г. английский ученый Лиссман изучал поведение рыбы гимнарха. Эта рыба обитает в мутной непрозрачной воде в озерах и болотах Африки и поэтому не всегда может для ориентации пользоваться зрением. Лиссман предположил, что эти рыбы, подобно летучим мышам, используют для ориентации эхолокацию.

Удивительная способность летучих мышей летать в полной темноте, не натыкаясь на препятствия, была обнаружена очень давно, в 1793г., т. е. почти одновременно с открытием Гальвани. Это сделал Лазаро Спалланцани - профессор университета в Павии. Однако экспериментальное доказательство того, что летучие мыши издают ультразвуки и ориентируются по их эху, было получено только в 1938 г. в Гарвардском университете в США, когда физики создали аппаратуру для регистрации ультразвука.

Проверив ультразвуковую гипотезу ориентации гимнарха экспериментально, Лиссман отверг ее. Оказалось, что гимнарх ориентируется как-то иначе. Изучая поведение гимнарха, Лиссман выяснил, что эта рыба обладает электрическим органом и в непрозрачной воде начинает генерировать разряды очень слабого тока. Такой ток не пригоден ни для защиты, ни для нападения. Тогда Лиссман предположил, что гимнарх должен обладать специальными органами для восприятия электрических полей - электросенсорной системой.

Это была очень смелая гипотеза. Ученые знали, что насекомые видят ультрафиолет, а многие животные слышат неслышимые для нас звуки. Но это было лишь некоторое расширение диапазона в восприятии сигналов, которые могут воспринимать и люди. Лиссман допустил существование совершенно нового типа рецепторов.

Ситуация осложнялась тем, что реакция рыб на слабые токи в это время была уже известной. Ее наблюдали еще в 1917 г. Паркер и Ван Хойзер на сомике. Однако эти авторы дали своим наблюдениям совсем другое объяснение. Они решили, что при пропускании тока через воду в ней меняется распределение ионов, и это влияет на вкус воды. Такая точка зрения казалась вполне правдоподобной: зачем придумывать какие-то новые органы, если результаты можно объяснить известными обычными органами вкуса. Правда, эти ученые никак не доказывали свою интерпретацию; они не поставили контрольного опыта. Если бы они перерезали нервы, идущие от органов вкуса, так чтобы вкусовые ощущения у рыбы исчезли, то обнаружили бы, что реакция на ток сохраняется. Ограничившись словесным объяснением своих наблюдений, они прошли мимо большого открытия.

Лиссман же, напротив, придумал и поставил множество разнообразных опытов и после десятилетней работы доказал свою гипотезу. Примерно 25 лет назад существование электрорецепторов было признано наукой. Электрорецепторы начали изучать, и вскоре они были обнаружены у многих морских и пресноводных рыб, а также у миног. Примерно 5 лет назад такие рецепторы были открыты у амфибий, а недавно - и у млекопитающих.

Где же расположены электрорецепторы и как они устроены?

У рыб есть механорецепторы боковой линии, расположенные вдоль туловища и на голове рыбы; они воспринимают движение воды относительно животного. Электрорецепторы - это другой тип рецепторов боковой линии. Во время эмбрионального развития все рецепторы боковой линии развиваются из того же участка нервной системы, что и слуховые и вестибулярные рецепторы. Так что слуховые рецепторы летучих мышей и электрорецепторы рыб - близкие родственники.

У разных рыб электрорецепторы имеют разную локализацию - они располагаются на голове, на плавниках, вдоль тела, а также и разное строение. Часто электрорецепторные клетки образуют специализированные органы. Мы рассмотрим тут один из таких органов, встречающихся у акул и у скатов,- ампулу Лоренцини. Лоренцини думал, что ампулы - это железы, вырабатывающие слизь рыбы. Ампула Лоренцини представляет собой подкожный канал, один конец которого открыт в наружную среду, а другой оканчивается глухим расширением; просвет канала заполнен желеобразной массой; электрорецепторные клетки выстилают в один ряд «дно» ампулы.

Интересно, что Паркер, который впервые заметил, что рыбы реагируют на слабые электрические токи, изучал и ампулы Лоренцини,но приписал им совсем другие функции. Он обнаружил, что, надавливая палочкой на наружный вход канала, можно вызвать реакцию акулы. Из таких опытов он сделал вывод, что ампула Лоренцини - это манометр для измерения глубины погружения рыбы, тем более, что по строению орган был похож на манометр. Но и на этот раз интерпретация Паркера оказалась ошибочной. Если акулу поместить в барокамеру и создать в ней повышенное давление, то ампула Лоренцини на него не реагирует - и это можно нт>едвидеть х не ставя эксперимента: вода давит со всех сторон и никакого эффекта нет *). А при давлении только на пору в желе, которое ее заполняет, возникает разность потенциалов, подобно тому, как возникает разность потенциалов в пьезоэлектрическом кристалле.

Как же устроены ампулы Лоренцини? Оказалось, что все клетки эпителия, выстилающего канал, прочно соединены между собой особыми «плотными контактами», что обеспечивает высокое удельное сопротивление эпителия. Канал, покрытый такой хорошей изоляцией, проходит под кожей и может иметь длину в несколько десятков сантиметров. Напротив, желе, заполняющее канал ампулы Лоренцини, имеет очень низкое удельное сопротивление; это обеспечивается тем, что в просвет канала ионные насосы накачивают много ионов К + . Таким образом, канал электрического органа представляет собой отрезок хорошего кабеля с высоким сопротивлением изоляции и хорошо проводящей жилой.

«Дно» ампулы устилают в один слой несколько десятков тысяч электрореценторных клеток, которые тоже плотно склеены между собой. Получается, что рецепторная клетка одним концом смотрит внутрь канала, а на другом конце образует синапс, где выделяет возбуждающий медиатор, действующий на подходящее к ней окончание нервного волокна. К каждой ампуле подходят 10- 20 афферентных волокон и каждое дает много терминалей, идущих к рецепторам, так что в результате на каждое волокно действуют примерно 2 ООО рецепторных клеток.

Посмотрим теперь, что происходит с самими электро-рецепторными клетками под действием электрического поля.

Если любую клетку поместить в электрическом поле, то в одной части мембраны знак ГШ совпадет со знаком напряженности поля, а в другой окажется противоположным. Значит, на одной половине клетки МП возрастет, а на другой, наоборот, снизится. Получается, что всякая клетка «чувствует» электрические поля, т. е. является электрорецептором.

И понятно: ведь в этом случае отпадает проблема преобразования внешнего сигнала в естественный для клетки - электрический. Таким образом, электрорецепторные клетки работают очень просто: при надлежащем знаке внешнего поля деполяризуется синаптическая мембрана этих клеток и этот сдвиг потенциала управляет выделением медиатора.

Но тогда возникает вопрос: в чем особенности электрорецепторных клеток? Может ли выполнять их функции любой нейрон? Чему служит особое устройство ампул Лоренцини?

Да, качественно, любой нейрон может считаться электрорецептором, но если перейти к количественным оценкам, ситуация меняется. Естественные электрические поля очень слабы, и все ухищрения, которые использует природа в электрочувствительных органах, направлены на то, чтобы, во-первых, поймать на синаптической мембране возможно большую разность потенциалов, и, во-вторых, обеспечить высокую чувствительность механизма выделения медиатора к изменению МП.

Электрические органы акул и скатов обладают чрезвычайно высокой чувствительностью: рыбы реагируют на электрические поля напряженностью 0,1 мкВ/см. Так что проблема чувствительности решена в природе блестяще. Как же достигаются такие результаты?

Во-первых, обеспечению такой чувствительности способствует устройство ампулы Лоренцини. Если напряженность поля равна 0,1 мкВ/см, а длина канала ампулы равна 10 см, то на всю ампулу придется разность потенциалов в 1 мкВ. Практически все это напряжение будет падать на слое рецепторов, так как его сопротивление гораздо выше, чем сопротивление среды в канале. Акула тут прямо использует закон Ома: V = 11$, так как ток, текущий в цепи, один и тот же, то падение напряжения больше там, где выше сопротивление. Таким образом, чем длиннее канал ампулы и чем ниже его сопротивление, тем большая разность потенциалов подается на электрорецептор.

Во-вторых, закон Ома «применяют» и сами электрорецепторы; разные участки их мембраны тоже имеют разное сопротивление: синаптическая мембрана, где выделяется медиатор, имеет большое сопротивление, а противоположный участок мембраны - маленькое, так что и тут разность потенциалов распределяется возможно выгоднее,

Что же касается чувствительности синаптической мембраны к сдвигам МП, то она может объясняться разными причинами: высокой чувствительностью к сдвигу потенциала могут обладать Са-каналы этой мембраны либо сам механизм выброса медиатора. Очень интересный вариант объяснения высокой чувствительности выделения медиатора к сдвигам МП предложил А.Л. Вызов. Его идея состоит в том, что в таких синапсах ток, генерируемый постсинаптической мембраной, затекает в рецепторные клетки и способствует выделению медиатора; в результате возникает положительная обратная связь: выделение медиатора вызывает ПСП, при этом через синапс течет ток, а это усиливает выделение медиатора. В принципе, такой механизм обязательно должен действовать. Но и в этом случае вопрос является количественным: насколько эффективным является такой механизм, чтобы играть какую-то функциональную роль? В последнее время А.Л. Вызову и его сотрудникам удалось получить убедительные экспериментальные данные, подтверждающие, что такой механизм действительно работает в фоторецепторах.

Борьба с шумами

Итак, за счет разных ухищрений с использованием закона Ома на мембране электрорецепторов создается сдвиг потенциала порядка 1 мкВ. Казалось бы, что если чувствительность пресинаптической мембраны достаточно высока - а это, как мы видели, действительно так и есть,- то все в порядке. Но мы не учли, что повышение чувствительности всякого прибора вызывает новую проблему - проблему борьбы с шумами. Мы называли чувствительность электрорецептора, воспринимающего 1 мкВ, фантастической и теперь поясним, почему. Дело в том, что эта величина гораздо ниже уровня шумов.

В любом проводнике носители зарядов участвуют в тепловом движении, т. е. хаотически движутся в разных направлениях. Иногда больше зарядов движется в одном направлении, чем в другом, а это означает, что в любом проводнике без всякого источника э. д. с. возникают токи. Применительно к металлам эта проблема была рассмотрена еще в 1913 г. де-Гаазом и Лоренцем. Экспериментально тепловые шумы в проводниках были обнаружены в 1927 г., Джонсоном. В том же году Г. Найквист дал детальную и общую теорию этого явления. Теория и эксперимент хорошо согласовывались: было показано, что интенсивность шума линейно зависит от величины сопротивления и от температуры проводника. Это естественно: чем больше сопротивление проводника, тем больше разность потенциалов, которая на нем появляется за счет случайно возникающих токов, а чем выше температура, тем больше скорость движения носителей зарядов. Таким образом, чем больше сопротивление проводника, тем большие колебания потенциала возникают в нем под действием теплового движения зарядов.

А теперь вернемся к электрорецепторам. Мы говорили, что для повышения чувствительности в этом рецепторе выгодно иметь возможно более высокое сопротивление мембраны, чтобы на ней падала большая часть напряжения. И действительно, сопротивление мембраны, которая выделяет медиатор, у электрорецепторной клетки очень велико, порядка 10 10 Ом. Однако за все приходится платить: высокое сопротивление этой мембраны ведет к усилению шумов. Колебание потенциала на мембране электрорецентора за счет тепловых шумов равно примерно 30 мкВ, т. е. в 30 раз больше, чем минимальный воспринимаемый сдвиг МП, возникающий под действием внешнего поля! Получается, что дело обстоит так, как будто вы сидите в комнате, где разговаривают каждый о своем три десятка человек, и пытаетесь вести разговор с одним из них. Если громкость всех шумов будет в 30 раз выше, чем громкость вашего голоса, то беседа будет, конечно, невозможна.

Как же акула «слышит» такой разговор сквозь тепловые шумы? Не имеем ли мы дело с чудом? Конечно, нет. Мы просили вас обратить внимание на то, что на одно воспринимающее волокно действуют синапсы примерно 2 ООО электрорецепторов. Под действием тепловых шумов в мембране то из одного, то из другого синапса выделяется медиатор и аффрентное волокно даже в отсутствие электрических полей вне рыбы все время импульсирует. При появлении внешнего сигнала все 2 ООО клеток выделяют медиатор, В результате этого и усиливается внешний сигнал.

Подождите, скажет думающий читатель, ведь 2 000 клеток и шуметь должны сильнее! Выходит, если продолжить аналогию с разговором в шумной комнате, что 100 человек легче перекричат трехтысячную толпу, чем один - тридцать? Но, оказывается, в действительности, как ни странно, так оно и есть. Наверно, каждый из нас не раз слышал, как сквозь бурю аплодисментов пробиваются ритмичные, все усиливающиеся хлопки. Или сквозь рев трибун стадиона отчетливо слышны возгласы: «Молодцы! Молодцы!», скандируемые даже не очень многочисленной группой болельщиков. Дело в том, что во всех этих случаях мы встречаемся с противоборством сигнала организованного, синхронного, с шумом, т. е. сигналом хаотическим. Грубо говоря, возвращаясь к электрорецепторам, их реакции на внешний сигнал синхронны и складываются, а из случайных тепловых шумов совпадает во времени только какая-то часть. Поэтому амплитуда сигнала растет прямо пропорционально числу рецепторных клеток, а амплитуда шума - значительно медленнее. Но позвольте, опять может вмешаться читатель, если шум в рецепторе всего в 30 раз сильнее сигнала, не слишком" ли расточительна природа? Зачем 2 000 рецепторов? Может, хватило бы и ста?

Когда речь заходит о количественных проблемах, нужно считать, а значит, нужна математика. В математике есть специальный раздел - теория вероятностей, в котором изучаются случайные явления и процессы самой разной природы. К сожалению, с этим разделом математики совсем не знакомят в общеобразовательной школе.

А теперь проведем простой расчет. Пусть внешнее поле сдвинуло МП всех рецепторов на 1 мкВ, Тогда общий полезный сигнал всех рецепторов будет равен 2 ООО неких единиц. Среднее значение шумового сигнала одного рецептора примерно 30 мкВ, но общий шумовой сигнал пропорционален 2000, т. е. равен всего 1350 единицам. Мы видим, что за счет суммации эффекта от большого числа рецепторов полезный сигнал в 1,5 раза превышает шум. Видно, что сотней рецепторных клеток обойтись нельзя. А при отношении сигнала к шуму равном 1,5, нервная система акулы уже способна этот сигнал обнаружить, так что никакого чуда не происходит.

Мы говорили, что палочки сетчатки реагируют на возбуждение всего одной молекулы родопсина. Но такое возбуждение может возникнуть не только под действием света, но и под действием тепловых шумов. В результате высокой чувствительности палочек в сетчатке должны все время возникать сигналы «ложной тревоги». Однако в действительности и в сетчатке имеется система борьбы с шумами, основанная на том же принципе. Палочки связаны между собой ЭС, что ведет к усреднению сдвигов их потенциала, так что все происходит так же, как в электрорецепторах. А еще вспомните объединение через высокопроницаемые контакты спонтанно активных клеток синусного узла сердца, дающее регулярный сердечный ритм и устраняющее колебания, присущие одиночной клетке. Мы видим, что природа широко использует усреднение для борьбы с шумами в разных ситуациях.

Как же животные используют свои электрорецепторы? О способе ориентации рыб в мутной воде мы подробнее поговорим в дальнейшем. А вот акулы и скаты используют свои электрорецепторы при поисках добычи. Эти хищники способны обнаружить скрытую под слоем песка камбалу только по электрическим полям, генерируемым ее мышцами при дыхательных движениях. Эта способность акул была показана в серии красивых опытов, выполненных Келмином в 1971 г, Животное может затаиться и не двигаться, может маскироваться под цвет фона, но оно не может прекратить обмен веществ, остановить работу сердца, перестать дышать, поэтому его всегда демаскируют запахи, а в воде - и электрические поля, возникающие при работе сердца и других мышц. Так что многих хищных рыб можно назвать «электроищейками».

... ; антитела же lgG4, IgA, IgD и IgE не активируют комплемент. К зффекторным функциям иммуноглобулинов относится также их избирательное взаимодействие с различными типами клеток при участии специальных рецепторов клеточной поверхности. КЛЕТОЧНЫЕ РЕЦЕПТОРЫ ДЛЯ АНТИТЕЛ Существует три типа рецепторов клеточной поверхности для IgG Клеточные рецепторы для IgG опосредуют ряд эффекторных функций...