Старт в науке. Что такое число фи, и его роль в жизни человека Пропорции фи

Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Числа Фибоначчи или Последовательность Фибоначчи
- числовая последовательность,- обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Последовательность Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233...

Свойства последовательности Фибоначчи

1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ).
2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.
3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

Связь последовательности Фибоначчи и "золотого сечения"
Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью- десятичных цифp в дpобной части. Его невозможно выразить точно.
Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875... и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из "сокpовищ геометpии". В алгебpе общепpинято его обозначение гpеческой буквой фи.

Ф=1.618

Золотое сечение
- это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618..., если AB принять за единицу, AC = 0,382.. Kак мы уже знаем числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи.

Пропорции Фибоначчи и золотого сечения в природе и истории
Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.
Пpиводимые ниже примеры показывают некоторые интересные приложения этой математической последовательности.-

1. Раковина, закрученная по спирали.
Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая- раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали. Cпираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

2. Растения и животные. Еще Гете подчеркивал тенденцию природы к спиральности.
Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Cпиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль "кривой жизни".

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Пьер Kюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

3. Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы
Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.
Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

4. Пирамиды.
Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математиче- скому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.
Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью - передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.


Категории:

Число Фи признано самым красивым во вселенной... Несмотря на мистическое происхождение, число Фи сыграло уникальную роль - роль базового блока в построении всего живого. Все растения, животные, и человеческие существа соответствуют физическим пропорциям, приблизительно равным корню от отношения числа Фи к 1... Число Фи - 1,618. Число Фи получено из последовательности Фибоначчи, математической прогрессии, известной не только тем, что сумма двух соседних чисел в ней равна последующему числу, но и потому, что частное двух соседствующих чисел обладает уникальным свойством - приближенностью к числу 1,618, то есть к числу Фи! Эта вездесущность Фи в природе указывает на связь всех живых существ. Семена подсолнечника располагаются по спиралям, против часовой стрелки и соотношение диаметра каждой из спиралей к диаметру последующей - есть Фи. Спиралеобразно закрученные листья початка кукурузы, расположение листьев на стеблях растений, сегментационные части тел насекомых. И все они в строении своем послушно следуют закону «божественной пропорции». Рисунок Леонардо да Винчи, изображающий обнаженного мужчину в круге. Никто лучше да Винчи не понимал божественной структуры человеческого тела, его строения. Он первым показал, что тело человека состоит из «строительных блоков», соотношение пропорций которых всегда равно нашему заветному числу. Если измерить расстояние от макушки до пола, затем разделить на свой рост, то мы увидим, какое получится число. Именно Фи - 1,618. Математик Фибоначчи жил в двенадцатом столетии (1175г.). Он был одним из самых известных ученых своего времени. Среди его величайших достижений - введение арабских цифр взамен римским. Он открыл суммационную последовательность Фибоначчи. Эта математическая последовательность возникает, когда, начиная с 1, 1, следующее число получается сложением двух предыдущих. Данная последовательность асимптотически стремится к некоторому постоянному соотношению. Однако это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно. Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1,61803398875... и через раз то превосходящая, то не остигающая его. Но, даже затратив на это Вечность, невозможно узнать соотношение точно, до последней десятичной цифры. При делении любого члена последовательности Фибоначчи на следующий за ним получается просто обратная к 1,618 величина (1:1,618). Но это тоже весьма необычное, даже замечательное явление. Поскольку первоначальное соотношение - бесконечная дробь, у этого соотношения также не должно быть конца. Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скорее неразрешимая головоломка из числовых комбинаций. Замечательные изобретательность, мастерство, время и труд архитекторов пирамиды, использованные ими при возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была до письменной, доиероглифической и символы были единственным средством записи открытий. Ключ к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты. Площадь треугольника 356 * 440 / 2 = 78320. Площадь квадрата 280 * 280 = 78400. Длина грани пирамиды в Гизе равна 783,3 фута (238,7 м), высота пирамиды - 484,4 фута (147,6 м). Длина грани, деленная на высоту, приводит к соотношению Ф = 1,618. Высота 484,4 фута соответствует 5813 дюймам (5-8-13) - это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф = 1,618. Современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью - передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1,618 играет центральную роль. Не только египетские пирамиды построены в соответствии с совершенными пропорциями золотого сечения, то же самое явление обнаружено и у мексиканских пирамид. Возникает мысль, что как египетские, так и мексиканские пирамиды были возведены приблизительно в одно время людьми общего происхождения.

Кампосанто (Camposanto monumentale). Пиза

Сегодня я вам уже рассказывал про но вот захотелось мне продолжить эту тему вот таким образом …

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.

Жизнь и научная карьера Леонардо теснейшим образом связана с развитием европейской культуры и науки.

До эпохи Возрождения было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих II, император Священной Римской империи. Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства. Рыцарские турниры Фридрих II совсем не признавал. Вместо этого он культивировал математические соревнования, на которых противники обменивались не ударами, а задачами.

На таких турнирах и заблистал талант Леонардо Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей. Встреча между Фибоначчи и Фредериком II произошла в 1225 году и была событием большой важности для города Пизы. Император ехал верхом во главе длинной процессии трубачей, придворных, рыцарей, чиновников и бродячего зверинца животных. Некоторые проблемы, которые Император поставил перед знаменитым математиком, подробно изложены в Книге абака. Фибоначчи, очевидно, решил проблемы, поставленные Императором, и навсегда стал желанным гостем при Королевском дворе.

Когда Фибоначчи перерабатывал Книгу абака в 1228 году, он посвятил исправленную редакцию Фредерику II. Всего он написал три значительных математических труда: Книга абака, опубликованная в 1202 году и переизданная в 1228 году, Практическая геометрия, опубликованная в 1220 году, и Книга квадратур. По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта. Как указано в документах 1240 года, восхищенные граждане Пизы говорили, что он был «рассудительный и эрудированный человек», а не так давно Жозеф Гиз, главный редактор Британской Энциклопедии заявил, что будущие ученые во все времена «будут отдавать свой долг Леонардо Пизанскому, как одному из величайших интеллектуальных первопроходцев мира».

Задача о кроликах.

Наибольший интерес представляет для нас сочинение «Kнига абака». Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими (арабскими) цифрами.

Материал поясняется на примерах задач, составляющих значительную часть этого тракта.

В данной рукописи, Фибоначчи поместил следующую задачу:

«Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рождают кролики со второго месяца после своего рождения.»

Ясно, что если считать первую пару кроликов новорожденными, то на второй месяц мы будем по прежнему иметь одну пару; на 3-й месяц — 1+1=2; на 4-й — 2+1=3 пары (ибо из двух имеющихся пар потомство дает лишь одна пара); на 5-й месяц — 3+2=5 пар (лишь 2 родившиеся на 3-й месяц пары дадут потомство на 5-й месяц); на 6-й месяц — 5+3=8 пар (ибо потомство дадут только те пары, которые родились на 4-м месяце) и т. д.

Таким образом, если обозначить число пар кроликов, имеющихся на n-м месяце через Fk, то F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, F7=13, F8=21 и т. д., причем образование этих чисел регулируется общим законом: Fn=Fn-1+Fn-2 при всех n>2, ведь число пар кроликов на n-м месяце равно числу Fn-1 пар кроликов на предшествующем месяце плюс число вновь родившихся пар, которое совпадает с числом Fn-2 пар кроликов, родившихся на (n-2)-ом месяце (ибо лишь эти пары кроликов дают потомство).

Числа Fn , образующие последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … называются «числами Фибоначчи», а сама последовательность — последовательностью Фибоначчи.

Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (средневековый математик) назвал его Божественной пpопоpцией. Kеплеp назвал это соотношение одним из сокровищ геометрии. В алгебре общепринято его обозначение греческой буквой «фи» (Ф=1.618033989…).

Ниже приведены отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее:

1:1 = 1.0000, что меньше фи на 0.6180

2:1 = 2.0000, что больше фи на 0.3820

3:2 = 1.5000, что меньше фи на 0.1180

5:3 = 1.6667, что больше фи на 0.0486

8:5 = 1.6000, что меньше фи на 0.0180

По меpе нашего пpодвижения по суммационной последовательности Фибоначчи каждый новый член будет делить следующий со все большим и большим пpиближением к недостижимому «фи». Kолебания соотношений около значения 1.618 на большую или меньшую величину мы обнаpужим в Волновой теоpии Эллиотта, где они описываются Пpавилом чеpедования. Следует обратить внимание, что в природе встречается именно приближение к числу «фи», тогда как математика оперирует с «чистым» значением. Его ввел Леонардо да Винчи и назвал «золотым сечением» (золотая пропорция). Cpеди его совpеменных названий есть и такие, как «золотое среднее» и «отношение вертящихся квадратов». Золотая пропорция – это деление отрезка АС на две части таким образом, что большая его часть АВ относится к меньшей части ВС так, как весь отрезок АС относится к АВ, то есть: АВ:ВС=АС:АВ=Ф (точное иррациональное число «фи»).

Пpи делении любого члена последовательности Фибоначчи на следующий за ним получается обpатная к 1.618 величина (1: 1.618=0.618). Это тоже весьма необычное, даже замечательное явление. Поскольку пеpвоначальное соотношение — бесконечная дробь, у этого соотношения также не должно быть конца.

При делении каждого числа на следующее за ним через одно, получаем число 0.382.

Подбирая таким образом соотношения, получаем основной набор коэффициентов Фибоначчи: 4.235, 2.618 , 1.618, 0.618, 0.382, 0.236. Все они играют особую роль в природе и в частности в техническом анализе.

Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.

Эти числа, бесспорно, являются частью мистической естественной гармонии, которая приятно осязается, приятно выглядит и даже приятно звучит. Музыка, например, основана на 8-ми нотной октаве. На фортепьяно это представлено 8 белыми клавишами и 5 черными — всего 13.

Более наглядное представление можно получить, изучая спирали в природе и произведениях искусства. Сакральная геометрия исследует два вида спиралей: спираль золотого сечения и спираль Фибоначчи. Сравнение этих спиралей позволяет сделать следующий вывод. Спираль золотого сечения идеальна: у нет начала и нет конца, она продолжается бесконечно. В отличии от нее спираль Фибоначчи имеет начало. Все природные спирали – это спирали Фибоначчи, а в произведениях искусства используются обе спирали, иногда одновременно.

Математика.

Пентаграмма (пентакль, пятиконечная звезда) — один из часто используемых символов. Пентаграмма – символ совершенного человека, стоящего на двух ногах с разведенными руками. Можно сказать, что человек – живая пентаграмма. Это верно как в физическом, так и в духовном плане – человек обладает пятью добродетелями и проявляет их: любовь, мудрость, истина, справедливость и доброта. Это добродетели Христа, которые можно представить пентаграммой. Эти пять добродетелей, необходимые для развития человека, непосредственно связаны с человеческим организмом: доброта связана с ногами, справедливость — с руками, любовь – со ртом, мудрость – с ушами, глаза – с истиной.

Истина принадлежит духу, любовь — душе, мудрость — интеллекту, доброта – сердцу, справедливость – воде. Существует также соответствие между человеческим организмом и пятью элементами (земля, вода, воздух, огонь и эфир): воля соответствует земле, сердце – воде, интеллект — воздуху, душа — огню, дух — эфиру. Таким образом, своей волей, интеллектом, сердцем, душой, духом человек связан с пятью элементами, работающими в космосе, и он может сознательно работать в гармонии с ним. Именно в этом смысл другого символа – двойной пентаграммы, человек (микрокосм) живет и действует внутри вселенной (микрокосма).

Перевернутая пентаграмма изливает энергию в Землю и, следовательно, является символы материалистических тенденций, тогда как обычная пентаграмма направляет энергию вверх, являясь, таким образом, духовной. В одном все согласны: пентаграмма, безусловно, представляет «духовную форму» человеческой фигуры.

Обратите внимание CF:FH=CH:CF=AC:CH=1,618. Действительные пропорции этого символа основаны на священной пропорции, называемой золотым сечением: это такое положение точки на любой проведенной линии, когда она делит линию так, что меньшая часть находится в том же соотношении к большей части, что и большая часть к целому. Кроме того, правильный пятиугольник в центре позволяет утверждать, что пропорции сохраняются и для бесконечно малых пятиугольников. Эта «божественная пропорция» проявляется в каждом отдельном луче пентаграммы и помогает объяснить тот трепет, с которым математики во все времена взирали на этот символ. Причем, если сторона пятиугольника равна единице, то диагональ равна 1,618.

Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий.

Ученые обнаружили, что три пирамиды в Гизе выстроены по спирали. В 1980-е годы было установлено, что там присутствуют и золотосеченная спираль и спираль Фибоначчи.

Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь тpеугольника
356 x 440 / 2 = 78320
Площадь квадpата
280 x 280 = 78400

Длина грани пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина гpани, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) — это числа из последовательности Фибоначчи.

Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Cовременные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью — передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего пpоисхождения.

Биология.

В 19 веке ученые заметили, что цветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, хвойных шишках и т. д. «упакованы» по двойным спиралям, завивающимся навстречу друг другу. При этом числа «правых» и «левых» спиралей всегда относятся друг к другу, как соседние числа Фибоначчи (13:8, 21:13, 34:21, 55:34). Многочисленные примеры двойных спиралей, встречающихся повсюду в природе, всегда соответствуют этому правилу.

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».

В любой хорошей книге в качестве примера показывают раковину наутилуса. Причем во многих изданиях сказано, что это спираль золотого сечения, но это неверно – это спираль Фибоначчи. Можно увидеть совершенство рукавов спирали, но если посмотреть на начало, то он не выглядит таким совершенным. Два самых внутренних ее изгиба фактически равны. Второй и третий изгибы чуть ближе приближаются к фи. Потом, наконец, получается эта изящная плавная спираль. Вспомните отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее. Будет понятно, что моллюск точно следует математике ряда Фибоначчи.

Числа Фибоначчи проявляются в морфологии различных организмов. Например, морские звезды. Число лучей у них отвечает ряду чисел Фибоначчи и равно 5, 8, 13, 21, 34, 55. У хорошо знакомого комара — три пары ног, брюшко делится на восемь сегментов, на голове пять усиков — антенн. Личинка комара членится на 12 сегментов. Число позвонков у многих домашних животных равно 55. Пропорция «фи» проявляется и в человеческом теле.

Друнвало Мелхиседек в книге «Древняя тайна Цветка Жизни» пишет: «Да Винчи вычислил, что, если нарисовать квадрат вокруг тела, потом провести диагональ от ступней до кончиков вытянутых пальцев, а затем провести параллельную горизонтальную линию (вторую из этих параллельных линий) от пупка к стороне квадрата, то эта горизонтальная линия пересечет диагональ точно в пропорции фи, как и вертикальную линию от головы до ступней. Если считать, что пупок находится в той совершенной точке, а не слегка выше для женщин или чуть ниже для мужчин, то это означает, что тело человека поделено в пропорции фи от макушки до ступней… Если бы эти линии были единственными, где в человеческом теле имеется пропорция фи, это, вероятно, было бы только интересным фактом. На самом деле пропорция фи обнаруживается в тысячах мест по всему телу, а это не просто совпадение.

Вот некоторые явственные места в теле человека, где обнаруживается пропорция фи. Длина каждой фаланги пальца находится в пропорции фи к следующей фаланге… Та же пропорция отмечается для всех пальцев рук и ног. Если соотнести длину предплечья с длиной ладони, то получится пропорция фи, так же длина плеча относится к длине предплечья. Или отнесите длину голени к длине стопы и длину бедра к длине голени. Пропорция фи обнаруживается во всей скелетной системе. Она обычно отмечается в тех местах, где что-то сгибается или меняет направление. Она также обнаруживается в отношениях размеров одних частей тела к другим. Изучая это, все время удивляешься».

Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.

Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты — свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

Заключение.

Хотя он и был величайшим математиком средних веков, единственные памятники Фибоначчи — это статуя напротив Пизанской башни через реку Арно и две улицы, которые носят его имя, одна — в Пизе, а другая — во Флоренции.

Если поставить открытую ладонь вертикально перед собой, направив большой палец к лицу, и, начиная с мизинца, последовательно сжимать пальцы в кулак, получится движение, которое есть спираль Фибоначчи.

источники

Литература

1. Энзензбергер Ханс Магнус Дух числа. Математические приключения. – Пер. с англ. – Харьков: Книжный Клуб «Клуб Семейного Досуга», 2004. – 272 с.

2. Энциклопедия символов /сост. В.М. Рошаль. – Москва: АСТ; СПб.; Сова, 2006. – 1007 с.

http://forum.fibo-forex.ru/index.php?showtopic=3805

Что еще интересного из математики могу вам напомнить, ну например вот: , а вот . А вот все таки, и есть еще вот такой Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1.Введение

Человек всегда стремился к идеалу везде и во всем. Идеальный дом, идеальная прическа, внешность, статуя, и многое другое. Человек, не задумываясь в таких моментах почти всегда обращается к числу «Фи».

Фибоначи, сам того не зная, сделал открытие, которое влияет на жизнь каждого из нас точно так же, как и воздух, земля и сама природа. Кому-то его открытие кажется бесполезным, кому-то сложным, а кому-то, как и мне прекрасным, но знать о нём должен каждый, ибо зная его человек может создать воистину прекрасные вещи.

2.Цели

Узнать что такое число «Фи».

Узнать кто и как открыл число «Фи».

Узнать что такое «золотое сечение».

Узнать о местах применения «золотого сечения и доказать, является ли оно эталоном красоты

3.Основная часть

3.1 Леонардо Пизанский

Леонардо Пизанский (около 1170-1250) - сын купца, путешествовавший вместе с ним. Гораздо более известен под прозвищем Фибоначи. Отец Фибоначчи по торговым делам часто бывал в Алжире, и Леонардо изучал там математику у арабских учителей. Позже Фибоначчи посетил Египет, Сирию, Византию, Сицилию. Он ознакомился с достижениями античных и индийских математиков в арабском переводе. На основе усвоенных им знаний Фибоначчи написал ряд математических трактатов, представляющих собой выдающееся явление средневековой западноевропейской науки. Труд Леонардо Фибоначчи «Книга абака» способствовал распространению в Европе позиционной системы счисления, более удобной для вычислений, чем римская нотация; в этой книге были подробно исследованы возможности применения индийских цифр, ранее остававшиеся неясными, и даны примеры решения практических задач, в частности, связанных с торговым делом. Позиционная система приобрела в Европе популярность в эпоху Возрождения.

В трактате «Цветок» (Flos, 1225 год) Фибоначчи исследовал кубическое уравнение x 3 +2x 2 +10x=20, предложенное ему Иоанном Палермским на математическом состязании при дворе императора Фридриха II. Сам Иоанн Палермский почти наверняка заимствовал это уравнение из трактата Омара Хайяма «О доказательствах задач алгебры», где оно приводится как пример одного из видов в классификации кубических уравнений. Леонардо Пизанский исследовал это уравнение, показав, что его корень не может быть рациональным или же иметь вид одной из квадратичных иррациональностей, встречающихся в X книге Начал Евклида, а затем нашёл приближённое значение корня в шестидесятеричных дробях, равное 1;22,07,42,33,04,40, не указывая, однако, способа своего решения.

«Книга квадратов» (Liber quadratorum, 1225 год) содержит ряд задач на решение неопределённых квадратных уравнений. Фибоначчи работал над поиском чисел, которые, будучи добавленными к квадратному числу, вновь дадут квадратное число. Он отметил, что числа x 2 +y 2 и х 2 -y 2 не могут быть квадратными одновременно, а также использовал для поиска квадратных чисел формулу x 2 +(2x+1)=(x+1) 2 . В одной из задач книги, также первоначально предложенной Иоанном Палермским, требовалось найти рациональное квадратное число, которое, будучи увеличено или уменьшено на 5, вновь даёт рациональные квадратные числа.

Среди не дошедших до нас произведений Фибоначчи трактат Di minor guisa по коммерческой арифметике, а также комментарии к книге X «Начал» Евклида.

Он прославился тем, что придумал задачу про размножение кроликов и получил последовательность чисел, которые потом были названы «последовательностью Фибоначи», а соотношение этих чисел равно 1,618 или же числу Фи.

3.2 Задача о кроликах

«Сколько пар кроликов рождается в год от одной пары кроликов, если через месяц пара кроликов производит на свет другую пару, а рожают кролики со второго месяца своего рождения?»

Ниже я составил таблицу для решения задачи:

Из этого можно сделать вывод что последовательность «чисел Фибоначи» есть соотношение двух величин b и a, a > b, когда справедливо a/b = (a+b)/a. А при выполнении данных действий мы получим число Фи. Пример: 144/89=(144+89)/144 = 1,618. И на таблице последний столбик и есть последовательность «чисел Фибоначи».

3.3 Точное значение числа «Фи» (1000 знаков после запятой)

1,6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362

3.4 Интересные математические свойства числа «Фи»

1) Каждое третье число Фибоначчи четно;

2) Каждое четвертое кратно 3;

3) Каждое пятнадцатое оканчивается нулем

Если мы разделим единицу на Ф, то получим число 0,61803… - те же самые десятичные знаки после запятой, что и у числа Ф. 1/Ф = Ф-1 1/1,618 = 0,618

1/Фи = Фи -1

1/1,618 = 0,618

3.5 Идеальная звезда, спираль и прямоугольник

Используя число «Фи» можно составить 3 идеальные фигуры.

Первая - идеальная звезда, в которой отрезки HF и FC, а так же другие стороны треугольников и соответствующие стороны внутреннего пятиугольника относятся как 1/1.618.

Вторая - идеальная спираль, которая образована ¼ окружностей вписанных в квадраты, стороны которых являются последовательностью «чисел Фибоначи» и относятся как 1/1.618.

Третья - идеальны прямоугольник, который состоит из квадрата и прямоугольника и меньшая сторона малого прямоугольника(b) относится к стороне квадрата(a) как 1/1.618, а так же сторона квадрата(a) относится к большей стороне большого прямоугольника(a+b) как 1/1.618.

Все эти идеальные фигуры представляют собой наяву «золотое сечение».

3.6 Число «Фи» или золотое сечение в природе

Число «Фи» Встречается на каждом шагу, но мы не всегда его замечаем.

Несколько примеров:

Семена подсолнуха расположены в виде идеальной спирали (спирали Фибоначи)

Так же число «Фи» есть в обычном курином яйце. По соотношению длин его половин.

Еще несколько примеров:

3.7 Живой пример числа «Фи».

Им является никто иной как человек.

Если вы измерите расстояние от плеча до кончиков пальцев, затем разделите его на расстояние от локтя до тех же кончиков пальцев. Получите число 1.618

Расстояние от верхней части бедра до пола, поделенное на расстояние от колена до пола - это снова число «Фи»

Сумма двух первых фаланг пальца в соотношении со всей длиной пальца = числу «Фи»

Из этого можно сделать вывод, что человек живой пример «божественной пропорции».

4.Выводы и заключение.

Я выполнил все поставленные задачи и благодаря этому узнал:

Что такое число «Фи».

Кто и как открыл число «Фи».

Что такое «золотое сечение».

Узнал о местах применения «золотого сечения и доказать, является ли оно эталоном красоты

Надеюсь своей работой я донес до читателя важность открытия Леонардо Пизанского и его актуальность.

Список литературы и Интернет - ресурсов.

1.https://ru.wikipedia.org

2. «Цветок» (Flos, 1225 год) - Леонардо Пизанский.

3. «Практика геометрии» (Practica geometriae, 1220 год) - Леонардо Пизанский.

4. «Книга квадратов» (Liber quadratorum, 1225 год) - Леонардо Пизанский.

Во вселенной еще много неразгаданных тайн, некоторые из которых ученые уже смогли определить и описать. Числа Фибоначчи и золотое сечение составляют основу разгадки окружающего мира, построения его формы и оптимального зрительного восприятия человеком, с помощью которых он может ощущать красоту и гармонию.

Золотое сечение

Принцип определения размеров золотого сечения лежит в основе совершенства целого мира и его частей в своей структуре и функциях, его проявление можно видеть в природе, искусстве и технике. Учение о золотой пропорции было заложено в результате исследований древними учеными природы чисел.

В основе его лежит теория о пропорциях и соотношениях делений отрезков, которое было сделано еще древним философом и математиком Пифагором. Он доказал, что при разделении отрезка на две части: X (меньшую) и Y (большую), отношение большего к меньшему будет равно отношению их суммы (всего отрезка):

В результате получается уравнение: х 2 - х - 1=0, которое решается как х=(1±√5)/2.

Если рассмотреть соотношение 1/х, то оно равно 1,618…

Свидетельства использования древними мыслителями золотой пропорции приведены в книге Эвклида «Начала», написанной еще в 3 в. до н.э., который применял это правило для построения правильных 5-угольников. У пифагорейцев эта фигура считается священной, поскольку является одновременно симметричной и асимметричной. Пентаграмма символизировала жизнь и здоровье.

Числа Фибоначчи

Знаменитая книга Liber abaci математика из Италии Леонардо Пизанского, который в последующем стал известен, как Фибоначчи, увидела свет в 1202 г. В ней ученый впервые приводит закономерность чисел, в ряду которых каждое число является суммой 2-х предыдущих цифр. Последовательность чисел Фибоначчи заключается в следующем:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Также ученый привел ряд закономерностей:

  • Любое число из ряда, разделенное на последующее, будет равно значению, которое стремится к 0,618. Причем первые числа Фибоначчи не дают такого числа, но по мере продвижения от начала последовательности это соотношение будет все более точным.
  • Если же поделить число из ряда на предыдущее, то результат устремится к 1,618.
  • Одно число, поделенное на следующее через одно, покажет значение, стремящееся к 0,382.

Применение связи и закономерностей золотого сечения, числа Фибоначчи (0,618) можно найти не только в математике, но и в природе, в истории, в архитектуре и строительстве и во многих других науках.

Спираль Архимеда и золотой прямоугольник

Спирали, очень распространенные в природе, были исследованы Архимедом, который даже вывел ее уравнение. Форма спирали основана на законах о золотом сечении. При ее раскручивании получается длина, к которой можно применить пропорции и числа Фибоначчи, увеличение шага происходит равномерно.

Параллель между числами Фибоначчи и золотым сечением можно увидеть и построив «золотой прямоугольник», у которого стороны пропорциональны, как 1,618:1. Он строится, переходя от большего прямоугольника к малым так, что длины сторон будут равны числам из ряда. Построение его можно сделать и в обратном порядке, начиная с квадратика «1». При соединении линиями углов этого прямоугольника в центре их пересечения получается спираль Фибоначчи или логарифмическая.

История применения золотых пропорций

Многие древние памятники архитектуры Египта возведены с использованием золотых пропорций: знаменитые пирамиды Хеопса и др. Архитекторы Древней Греции широко использовалиих их при возведении архитектурных объектов, таких как храмы, амфитеатры, стадионы. Например, были применены такие пропорции при строительстве античного храма Парфенон, (Афины) и других объектов, которые стали шедеврами древнего зодчества, демонстрирующими гармонию, основанную на математической закономерности.

В более поздние века интерес к золотому сечению поутих, и закономерности были забыты, однако опять возобновился в эпоху Ренессанса вместе с книгой францисканского монаха Л. Пачоли ди Борго «Божественная пропорция» (1509 г.). В ней были приведены иллюстрации Леонардо да Винчи, который и закрепил новое название «золотое сечение». Также были научно доказаны 12 свойств золотой пропорции, причем автор рассказывал о том, как проявляется она в природе, в искусстве и называл ее «принципом построения мира и природы».

Витрувианский человек Леонардо

Рисунок, которым Леонардо да Винчи в 1492 г. проиллюстрировал книгу Витрувия, изображает фигуру человека в 2-х позициях с руками, разведенными в стороны. Фигура вписана в круг и квадрат. Этот рисунок принято считать каноническими пропорциями человеческого тела (мужского), описанными Леонардо на основе изучения их в трактатах римского архитектора Витрувия.

Центром тела как равноудаленной точкой от конца рук и ног считается пупок, длина рук приравнивается к росту человека, максимальная ширина плеч = 1/8 роста, расстояние от верха груди до волос = 1/7, от верха груди до верха головы =1/6 и т.д.

С тех пор рисунок используется в виде символа, показывающего внутреннюю симметрию тела человека.

Термин «Золотое сечение» Леонардо использовал для обозначения пропорциональных отношений в фигуре человека. Например, расстояние от пояса до ступней ног соотносится к аналогичному расстоянию от пупка до макушки так же, как рост к первой длине (от пояса вниз). Эти вычисление делается аналогично соотношению отрезков при вычислении золотой пропорции и стремится к 1,618.

Все эти гармоничные пропорции часто используются деятелями искусства для создания красивых и впечатляющих произведений.

Исследования золотого сечения в 16-19 веках

Используя золотое сечение и числа Фибоначчи, исследовательскую работу по вопросу о пропорциях продолжают уже не одно столетие. Параллельно с Леонардо да Винчи немецкий художник Альбрехт Дюрер также занимался разработкой теории правильных пропорций тела человека. Для этого им даже был создан специальный циркуль.

В 16 в. вопросу о связи числа Фибоначчи и золотого сечения были посвящены работы астронома И. Кеплера, который впервые применил эти правила для ботаники.

Новое «открытие» ожидало золотое сечение в 19 в. с опубликованием «Эстетического исследования» немецкого ученого профессора Цейзига. Он возвел эти пропорции в абсолют и объявил о том, что они универсальны для всех природных явлений. Им были проведены исследования огромного количества людей, вернее их телесных пропорций (около 2 тыс.), по итогам которых сделаны выводы о статистических подтвержденных закономерностях в соотношениях различных частей тела: длины плеч, предплечий, кистей, пальцев и т.д.

Были исследованы также предметы искусства (вазы, архитектурные сооружения), музыкальные тона, размеры при написании стихотворений — все это Цейзиг отобразил через длины отрезков и цифры, он же ввел термин «математическая эстетика». После получения результатов выяснилось, что получается ряд Фибоначчи.

Число Фибоначчи и золотое сечение в природе

В растительном и животном мире существует тенденция к формообразованию в виде симметрии, которая наблюдается в направлении роста и движения. Деление на симметричные части, в которых соблюдаются золотые пропорции, — такая закономерность присуща многим растениям и животным.

Природа вокруг нас может быть описана с помощью чисел Фибоначчи, например:

  • расположение листьев или веток любых растений, а также расстояния соотносятся с рядом приведенных чисел 1, 1, 2, 3, 5, 8, 13 и далее;
  • семена подсолнуха (чешуя на шишках, ячейки ананаса), располагаясь двумя рядами по закрученным спиралям в разные стороны;
  • соотношение длины хвоста и всего тела ящерицы;
  • форма яйца, если провести линию условно через широкую его часть;
  • соотношение размеров пальцев на руке человека.

И, конечно, самые интересные формы представляют закручивающиеся по спирали раковины улиток, узоры на паутине, движение ветра внутри урагана, двойная спираль в ДНК и структура галактик — все они включают в себя последовательность чисел Фибоначчи.

Использование золотого сечения в искусстве

Исследователи, занимающиеся поиском в искусстве примеров использования золотого сечения, подробно исследуют различные архитектурные объекты и произведения живописи. Известны знаменитые скульптурные работы, создатели которых придерживались золотых пропорций, — статуи Зевса Олимпийского, Аполлона Бельведерского и

Одно из творений Леонардо да Винчи — «Портрет Моны Лизы» — уже многие годы является предметом исследований ученых. Ими было обнаружено, что композиция работы целиком состоит из «золотых треугольников», объединенных вместе в правильный пятиугольник-звезду. Все работы да Винчи являются свидетельством того, насколько глубоки были его познания в строении и пропорциях тела человека, благодаря чему он и смог уловить невероятно загадочную улыбку Джоконды.

Золотое сечение в архитектуре

В качестве примера ученые исследовали шедевры архитектуры, созданные по правилам «золотого сечения»: египетские пирамиды, Пантеон, Парфенон, Собор Нотр-Дам де Пари, храм Василия Блаженного и др.

Парфенон — одно из красивейших зданий в Древней Греции (5 в. до н.э.) — имеет 8 колонн и 17 по разным сторонам, отношение его высоты к длине сторон равно 0,618. Выступы на его фасадах сделаны по «золотому сечению» (фото ниже).

Одним из ученых, который придумал и успешно применял усовершенствование модульной системы пропорций для архитектурных объектов (так называемый «модулор»), — был французский архитектор Ле Корбюзье. В основу модулора положена измерительная система, связанная с условным делением на части человеческого тела.

Русский архитектор М. Казаков, построивший несколько жилых домов в Москве, а также здания сената в Кремле и Голицынской больницы (сейчас 1-я Клиническая им. Н. И. Пирогова), — был одним из архитекторов, которые использовали при проектировании и строительстве законы о золотом сечении.

Применение пропорций в дизайне

В дизайне одежды все модельеры делают новые образы и модели с учетом пропорций человеческого тела и правил золотого сечения, хотя от природы не все люди имеют идеальные пропорции.

При планировании ландшафтного дизайна и создании объемных парковых композиций с помощью растений (деревьев и кустарников), фонтанов и малых архитектурных объектов также могут применяться закономерности «божественных пропорций». Ведь композиция парка должна быть ориентирована на создание впечатления на посетителя, который свободно сможет ориентироваться в нем и находить композиционный центр.

Все элементы парка находятся в таких соотношениях, чтобы с помощью геометрического строения, взаиморасположения, освещения и света, произвести на человека впечатление гармонии и совершенства.

Применение золотого сечения в кибернетике и технике

Закономерности золотого сечения и чисел Фибоначчи проявляются также в переходах энергии, в процессах, происходящих с элементарными частицами, составляющих химические соединения, в космических системах, в генной структуре ДНК.

Аналогичные процессы происходят и в организме человека, проявляясь в биоритмах его жизни, в действии органов, например, головного мозга или зрения.

Алгоритмы и закономерности золотых пропорций широко используются в современной кибернетике и информатике. Одна из несложных задач, которую дают решать начинающим программистам, — написать формулу и определить, сумму чисел Фибоначчи до определенного числа, используя языки программирования.

Современные исследования теории о золотой пропорции

Начиная с середины 20 века, интерес к проблемам и влиянию закономерностей золотых пропорций на жизнь человека, резко возрастает, причем со стороны многих ученых различных профессий: математиков, исследователей этноса, биологов, философов, медицинских работников, экономистов, музыкантов и др.

В США с 1970-хгодов начинает выпускаться журнал The Fibonacci Quarterly, где публикуются работы на эту тему. В прессе появляются работы, в которых обобщенные правила золотого сечения и ряда Фибоначчи используют в различных отраслях знаний. Например, для кодирования информации, химических исследований, биологических и т.д.

Все это подтверждает выводы древних и современных ученых о том, что золотая пропорция многосторонне связана с фундаментальными вопросами науки и проявляется в симметрии многих творений и явлений окружающего нас мира.